A taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Aleksandr Petrovich Shalimov¹ ², Yu-Dong Wu¹ ², Xian-Chun Zhang¹

¹ State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences (CAS), Beijing 100093, China ² University of Chinese Academy of Science, Beijing, 100049, China

Corresponding author: Xian-Chun Zhang (zhangxc@ibcas.ac.cn)

Abstract

The present paper deals with the taxonomy of *Selaginella* from Nepal based on the examination of herbarium collections housed in major herbaria of Europe and Asia (with additional collections from virtual herbaria). A total of 25 species are recognised here, while *Selaginella trichophylla* and *S. laxistrobila* are two new records for the flora of Nepal, India (Sikkim) and Bhutan; *Selaginella monospora* var. *ciliolata* is synonymised to *S. trichophylla*; detailed descriptions, distribution and ecology and IUCN conservation status assessments (based on literature) are presented. For most of the species, illustrations of the leaves and strobili are provided for identification of the morphologically similar taxa.

Keywords

Lycophytes, Nepalese flora, new records, taxonomy

Introduction

Selaginella P. Beauv. is the largest genus of lycophytes, with more than 700 species distributed all over the world but with highest diversity in the tropics (Jermy 1986, Zhou et al. 2015, PPG I 2016, Weststrand and Korall 2016). The Himalaya is one of the diversity centers of ferns and lycophytes of the World. Alston (1945) published the first account of Indian (including Nepalese) *Selaginella* P. Beauv. Earlier Don (1824), in his “Prodromus Florae Nepalensis”, described seven species in *Lycopodium* L., including species of heterosporous *Selaginella*. Thapa (2002) listed 23 species of *Selaginella*. Fraser-Jenkins et al.’s (2015) revision of Nepalese *Selaginella* also recognised 23 species.
The purpose of our study was to revise the taxonomy of the genus *Selaginella* of Nepal, providing a taxonomic treatment with diagnostic keys by macro-morphological characters.

Material and methods

This study was based on materials deposited at the following herbaria: AAU, B, BM, E, GH, K, KATH, KUN, KYO, L, P, PE, TI and US (herbarium acronyms follow Thiers 2019). Images of type specimens of all species from Nepal and neighboring countries were studied by accessing those at E (http://data.rbge.org.uk/herb), K (http://apps.kew.org/herbcat/gotoHomePage.do), P (https://science.mnhn.fr/all/search), B (http://ww2.bgbm.org/herbarium/default.cfm), GH (https://huh.harvard.edu/collections/gray.html), US (http://collections.si.edu/search/results.htm), L (https://bioportal.naturalis.nl) and JSTOR Global Plants project database (https://plants.jstor.org). It is worth noting that part of the collections from Edinburgh Botanic Garden (E) and British Natural History Museum (BM) were borrowed and carefully examined in the Herbarium PE (Beijing). About 350 herbarium specimens, including types for most species associated with taxonomy of *Selaginella* from Nepal, and many photos of the herbarium collections from KYO and TI provided by Mr. C.R. Fraser-Jenkins, were checked.

Morphological characters, such as ventral (lateral), dorsal (median) and axillary leaves were carefully observed. The morpho-photographs of the plants were taken with a Nikon DXM 1200F camera connected to a stereomicroscope (Nikon SMZ 1000) and computer and measurement was done by D 3.10 (http://www.nikoninstruments.com).

Descriptions of the species follow the form of Zhang et al. (2013), with minor changes, and were prepared based on examined dried herbarium specimens from Nepal and neighboring countries. IUCN categories (IUCN 2001) are based on published data/assessments following Fraser-Jenkins et al. (2015).

The distribution information was gathered from herbarium specimens, and literature.

Taxonomic treatment

Key to species of *Selaginella* from Nepal

1. Sporophylls monomorphic...2
 – Sporophylls dimorphic...11
2. Leaves dimorphic or slightly dimorphic ...3
 – Leaves monomorphic, spirally arranged on all sides of stem and branches, linear-lanceolate..1. *S. indica*
3. Rhizophores restricted to base of stem, forming thick massive rootstock....4
 – Rhizophores at intervals throughout creeping stem and branches or in basal part...5
Main stems branched near and above base, rosette plants, xerophytic ... 2. *S. pulvinata*

Main stems branched from near middle part, not rosette plants, xerophytic ... 3. *S. bryopteris*

Stems and branches cylindrical, often reddish, sterile leaves not obviously dimorphic, or almost monomorphic, adpressed to stems and branches 6

Stems and branches cylindrical, not reddish, sterile leaves dimorphic 7

Leaves ciliolate at margin ... 4. *S. adunca*

Leaves entire or slightly denticulate at margin .. 5. *S. aitchisonii*

Plants with creeping subterranean rhizome and stolons .. 8

Plants with rhizophores at intervals throughout length of main stem, borne on ventral or dorsal side in axils of branches ... 9

Plants 50–100 cm long, main stem erect, leaves ciliate at base ... 6. *S. fulcrata*

Plants up to 16–65 cm, leaves denticulate with false vein on each side of mid-vein ... 7. *S. involvens*

Rhizophores borne on ventral side in axils of branches, ventral and dorsal leaves ovate, margin dentate-serrulate .. 8. *S. pallida*

Rhizophores borne on dorsal side in axils of branches .. 10

Stem articulate, ventral leaves ovate-lanceolate .. 9. *S. remotifolia*

Stem not articulate, ventral leaves oblong-lanceolate 10. *S. semicordata*

Strobili cylindrical or rather lax .. 12

Strobili dorsiventrally complanate .. 14

Strobili cylindrical, sporophylls monomorphic ... 11. *S. helvetica*

Strobili not cylindrical, sporophylls rather lax, often forked 13

Plants to 25 cm long, ventral leaves ovate, ovate-triangular or ovate-lanceolate, margin denticulate .. 12. *S. pallidissima*

Plants to 6 cm high, ventral leaves ovate-triangular, margin ciliolate

.. 13. *S. laxistrobila*

Apex of dorsal leaves mucronate or arista, arista curved .. 15

Apex of dorsal leaves acuminate or arista .. 16

Apex of dorsal leaf arista, arista curved, up to 1/2–4/5 as long as leaf, margin sparsely ciliolate; ventral leaves oblong, apex apiculate, margin ciliolate or denticulate .. 14. *S. bisulcata*

Apex of dorsal leaf arista, up to 1/2–3/4 as long as leaf; ventral leaves oblong or oblong-ovate, apex acute or apiculate, margin sparsely shortly ciliolate

.. 15. *S. pennata*

Main stems tuberous at base .. 16. *S. chrysocaulos*

Main stems not tuberous at base ... 17

Sporophylls at margin long ciliate .. 17. *S. ciliaris*

Sporophylls at margin dentate, or not long ciliate ... 18

Plants creeping .. 19

Plants sub-erect or creeping ... 20
Plants long creeping, ventral leaves ovate-triangular or oblong-falcate, margin denticulate; dorsal leaves ovate-lanceolate or elliptic, margin denticulate, apex acuminate or shortly aristate .. 18. *S. monospora*

– Plants long creeping, ventral leaves ovate-triangular, margin ciliolate, dorsal leaves ovate, margin ciliolate, apex aristate 19. *S. trichophylla*

20 Plants creeping .. 21

– Plants sub-erect or ascending ... 22

21 Plants ascending from decumbent base, leaves on main stems rather approximate, base of ventral leaves long ciliolate; axillary leaves ovate or ovate-lanceolate, margin shortly ciliolate .. 20. *S. repanda*

– Plants up to 10 cm, creeping, fertile stems erect, leaves on main stems and branches distant, margin denticulate in basal half, elsewhere subentire, or very ciliolate at base; axillary leaves ovate-triangular, margin ciliolate in basal half, elsewhere subentire .. 21. *S. vaginata*

22 Plants c. 15 cm long, acroscopic base of ventral leaves dentate 23

– Plants more 15 cm long, acroscopic base of ventral leaves dentate or dentate-ciliolate .. 24

23 Apex of dorsal leaves shortly cuspidate .. 22. *S. chrysorrhizos*

– Apexes of dorsal leaves not cuspidate .. 23. *S. reticulata*

24 Ventral leaves ovate to ovate-lanceolate, acroscopic base ciliate-dentate, auriculate at base; dorsal leaves ovate, base obtuse or slightly subcordate, margin ciliolate to denticulate .. 24. *S. subdiaphana*

– Ventral leaves ovate, acroscopic base denticulate, base cordate, dorsal leaves ovate, base subcordate, margin minutely dentate......... 25. *S. tenuifolia*

Selaginella indica (Milde) R.M. Tryon
Figs 1(1A–C), 9A, 12

≡ *Selaginella emodi* Fraser-Jenk., Ferns Fern-Allies Nepal 1: 67. 2015. **Type.** NEPAL. Central Nepal, Rasuwa District, on path leading up from Dhunche to Chandanbari and Gosainkund, c. 3 km above and E. of Dhunche, N. of Trisuli Bazaar, Rasuwa District, N. of Kathmandu, rocky pathside tussocks of grasses etc. beneath cliff, 2 XII 2004. C. R. Fraser-Jenkins 30915 (holotype: TAIF).

– *Selaginella wightii* auct. non Hieron.: Panigrahi and Dixit 1968.

A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Figure 1. Morphological diversity of the leaves of Nepalese *Selaginella* species: 1A–C *S. indica* (Nakaike 1325, PE) 2A–C *S. pulvinata* (Tabata et al. 3520, PE) 3A–C *S. bryopteris* (Tabata et al. 11989, PE). A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.

– *Selaginella longipila* auct. non Hieron; Alston 1945; Tryon 1955; Dixit 1992.

Description. Stems 5–15 cm, creeping. Rhizophores at intervals throughout the length of the creeping stem and branches, borne on dorsal side in axils of branches, densely hairy. Main stems anisotomously branched throughout, strongly dorsi-ventral in posi-
tion, glabrous. Lateral branches arranged on main stem 0.5–1 cm apart, second branches simple or forked. Leaves spirally arranged on all sides stem and branches, more or less isomorphic, long linear-lanceolate, 0.8–2.3 mm excluding seta, 0.3–0.5 mm wide, margin shortly ciliolate, apex acuminate, in apex with long apical seta c. 1/5 as long as leaves. Strobili solitary on erect branchlets, tetragonal, 5–25 × 1.5–2 mm. Sporophylls monomorphic, ovate-triangular or ovate-lanceolate, margin ciliolate, apex acuminate. Megaspores pale-orange, surface rugose; microspores deep yellow, surface rugose to reticulate.

Ecology. Epilithic, xerophytic, summer-green, in dry areas, forming clumps on moss covered rocks. Alt. 1350–2800 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: NT (Fraser-Jenkins et al. 2015).

General distribution. CHINA (Sichuan, Xizang, Yunnan), INDIA (Andhra Pradesh, Chhattisgarh, Jharkhand, Karnataka, Madhya Pradesh, Meghalaya, Odisha, Tamil Nadu, Uttarakhand, West Bengal).

Chromosome number. not available data.

Selected specimens examined:

C Nepal: RASUWA: “between Lama Hotel and Sharpugaon, alt. 2600–2800 m, 3 Sep 1986, T. Nakaike 1325” (PE).

Selaginella pulvinata (Hook. & Grev.) Maxim.

Figs 1(2A–C), 13

(Selaginella pulvinata (Hook. & Grev.) Hand.-Mazz., Symb. Sin. 6: 5. 1929, later isonym).

Description. Stems 2–15(–20) cm, many forming rosette at top of thick rootstock, branched from base. Main stems branched near and above base, primary branches pinnately branched, second branches 2–3 forked, stramineous or brown, main stem c. 1 mm in diam. at lower part. Axillary leaves ovate to triangular, c. 2.5 × 1 mm,
base exauriculate, margin lacerate-ciliolate, apex acute. Ventral leaves ovate, 2.9–3.2 × 1.4–1.5 mm, rotundate-cordate at base, margin lacerate, apex acuminate. Dorsal leaves ovate, 2.8–3.1 × 0.9–1.2 mm, base truncate, entire to obscurely denticulate, posterior side thickened, apex aristate. Strobili solitary, terminal, compact, tetragonal, 7–15(–20) × 1.5–2 mm. Sporophylls monomorphic, ovate, at base cordate, margin slight denticulate, apex acuminate. Megaspores white-yellow, surface verrucate; microspores yellow, surface irregularly papillate.

Ecology. Terrestrial or epilithic, xerophytic. Alt. 1800–4400 m.

Distribution in Nepal. W.

Nepalese threatened status: EN (Fraser-Jenkins et al. 2015).

General distribution. CHINA (Chongqing, S Gansu, Guangxi, Guizhou, Hebei, Henan, Liaoning, Shaanxi, Shanxi, Sichuan, Xizang), INDIA (Uttarakhand), KOREA, MONGOLIA, RUSSIA (Siberia), THAILAND, VIETNAM.

Chromosome number. not available data.

Selected specimens examined:

W Nepal: BAJHANG: “Bauligad, on open rock, rooting on crevices, alt. 1830 m, 6 Jul 1980, P.R. Shakya, L.R. Sharma, K.R. Amatya 6328” (KATH).

Selaginella bryopteris (L.) Baker
Figs 1(3A–C), 9B, 14

Description. Stems 5–25 cm, suberect to erect. Rhizophores at lower and basal part stem. Main stems branched from near middle part, in basal part main stem 1.5–2.5 mm in diam. Axillary leaves slightly similar with ventral leaves, base cuneate, margin irregular, finely denticulate, 2.0–3.5 × 1.3–2.0 mm. Ventral leaves ovate, 1.5–2.0 × 1.0–1.5 mm, oblique at base, imbricate, margin denticulate, acute to acuminate at apex. Dorsal leaves ovate, 1.4–1.8 × 1.2–1.5 mm, slightly asymmetric, oblique at base,
margin entire to minutely denticulate, apex acute to acuminate. Strobili rare, solitary, terminal, compact, 3–5 × 1–2.5 mm. Sporophylls monomorphic, ovate, margin entire to minutely denticulate, apex acuminate. Megaspores dull-yellow, surface verrucate, microspore yellow, surface granulate.

Ecology. On rocks in dense forests at lower elevation. Alt. 250–1700 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: not available data.

General distribution. BHUTAN, INdia (Assam, Darjeeling, Uttarakhand, NE, C and S India), ARABIA, N AFRICA.

Chromosome number. 2n=20 (Fabbri 1965; Jermy et al. 1967).

Selected specimens examined:

Nepal. “De la Banaouëra Khola à Balauta, alt. 400 m. 6 XI 1954. A. Zimmernann 2077” (KYO, photo).

W Nepal: HUMLA: “Between Danna and Sali Salla (the junction of Loti Gad and Humla Karnali River), dry rock on SW-facing slope, alt. 1740 m, 26 Sep 1983, H. Tabata et al. 23629” (KYO, photo).

HUMLA, MUGU: “Between Tirthasain, Humla Dist., and Huanglu, Mugu Dist., on the trail in grassland on W-facing slope, alt. 1400 m, 5 Sep 1983, H. Tabata et al. 24648” (KYO, photo).

SALYAN: “Salyana, alt. 5000 ft., dry earth bank beside track, 29 Mar 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 667” (US, photo; KYO, photo).

C Nepal: CHITAWAN: “damp, rocky sides of small steam-gully at Lambola Khola, c. ½ km S of Beldas (Satara Kilo) village, 18 km S. of Mugling on road to Narayanghat, S. W. of Kathmandu, alt. 350 m, 20 Jan 2000, C.R. Fraser-Jenkins 38395 (FN 4370)” (US, photo).

E Nepal: TEHRATHUM: “en route from Iwa to Majhi, on dry slope along the river, Shorea-Shima forest, 610 m, 29 Jun 1978, H. Tabata, K.R. Rajbhandari, Y. Shimizu 11989” (PE).

DHANKUTA: “Dhankuta, 26°50’N, 87°20’E, alt. 400 m, 11 Oct 1971, J.F. Dobremez DBR NEP 1373” (E00670572); “by River Tamur, near Suspension Bridge, alt. 1000 ft, 18 Sep 1961, A.H. Norkett 5094” (BM001022383).

TAPLEJUNG: “Tamur Bridge, alt. 250–300 m. 4 Sep 1977, H. Ohashi et al. 773141” (TI, photo).

Selaginella adunca A. Braun ex Hieron.

Figs 2(1A–C), 15

Description. Stems 10–25 cm, erect. Rhizophores restricted in basal part of stems, located on ventral side. Main stems branched from middle upward, decumbent, simple
Figure 2. Morphological diversity of the leaves of Nepalese Selaginella species 1A–C S. adunca (Strachey & Winterbottom 5, PE) 2A–C S. fulcrata (Nakaike 1923, PE) 3A–C S. involvens (Zhang 345, PE).

A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.

in basal region, branches decompound, close together, flabellate, in basal part main stem 1.2–1.5 mm in diam. Main stems terete, bright and sometimes stramineous-red. Axillary leaves symmetrical, oblong, base exauriculate, margin ciliolate. Ventral leaves asymmetrical, oblong, 0.9–1.4 × 0.6–1 mm, subfalcate, acroscopic base dilated, ciliate at base, rest dentate to denticulate above, apex cuspidate. Dorsal leaves small, elliptic,
0.7–1.2 × 0.4–0.8 mm, base cuneate truncate, margin dentate, apex cuspidate. Strobili solitary, terminal, compact, tetrahedral, 3.0–5.0 × 1.0–2.2 mm, slightly wider branches. Sporophylls monomorphic, deltoid, cuspidate, margin dentate, strongly keeled. Megaspores reddish-brown, surface verrucate; microspores orange, surface verrucate

Ecology. Terrestrial or epilithic, xerophytic, on open semi-dry stony areas. Alt. 330–2500 m.

Distribution in Nepal. W.

Nepalese threatened status: NT (Fraser-Jenkins et al. 2015). Endemic NW Himalaya, rare.

General distribution. INDIA (Uttarakhand, Himachal Pradesh).

Chromosome number. not available data.

Selected specimens examined:

W Nepal: KALIKOT: “Between Kairkot and Lapha, Karnali Valley, crevices of dry cliff., alt. 4500 ft, 26 Apr 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 3984” (E, photo; US, photo; KYO, photo); “Kiurithanu, Karnali River, growing on vertical rocks, alt. 4000 ft, 21 Apr 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 797” (E, photo; US, photo; KYO, photo).

DOLPA: “Between Phulchangi and Chong, near Tibrikot, growing among stones on dry hot open slopes, alt. 8000 ft, 11 Nov 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 3323” (AAU; E, photo; US, photo; KYO, photo).

DANG: “Between Kurpani and Ghorai, growing on damp sheltered earth banks, alt. 4000 ft, 4 Sep 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 1332” (E, photo);

KALIKOT: “Taelou, 28°53’N, 82°30’E, 1100 m, 22 Apr 1984, J.F. Dobremez DBR NEP 2689” (E00670605); “Bodi Khola, 1700 m, 25 Apr 1974, J.F. Dobremez DBR NEP s.n.” (E00670564).

Selaginella aitchisonii Hieron.

Description. Stems 10–25 cm, erect, slender. Rhizophores restricted to the basal part of stems, located on ventral side. Main stems branches from near bases, lateral branches dichotomously compound. Main stems terete, reddish, in basal part main stem 1.0–1.1
mm in diam. Axillary leaves symmetrical, ovate-oblong, carinate, at base obtuse, margin hyaline, at base denticulate, in middle and upper part entire, apex acuminate. Leaves isomorphic, slightly asymmetrical, ovate-lanceolate, uniauriculate at base, obtuse, peltate, margin hyaline, denticulate at base, entire in middle and upper part, apex mucronate to acuminate. Strobili solitary, terminal, compact, tetrahedral, 6.0–10.0 × 1.0–2.0 mm, slightly wider branches. Sporophylls monomorphic, ovate, truncate at base, strongly keeled, apex mucronate to acute. Megaspores yellow, irregular verrucate. Microspores deep yellow, surface rugulose-tuberculate, with perispore on surface.

Distribution in Nepal. W.
Nepalese threatened status: VU, globally threatened (Fraser-Jenkins et al. 2015).

General distribution. AFGHANISTAN, INDIA (Jammu and Kashmir), KYRGYZSTAN, PAKISTAN.

Chromosome number. not available data.

Selected specimens examined:
W Nepal: HUMLA: “Phal Ko Odar to Pipling, on mossy stone. 2600 m, 6 Jun 1980, P.R. Shakya & B. Roy 5514” (KATH).

Note. Selaginella aitchisonii is morphologically closely related to the widespread S. sanguinolenta, a species complex consists of several morphological variable forms which might be recognised as distinct species pending our molecular phylogentic analysis (data not published).

Selaginella fulcrata (Buch.-Ham. ex D. Don) Spring
Figs 2(2A–C), 9C, 16

Description. Stems glabrous, 50–110 cm, erect. Main stems simple at base, branched from middle part of stem, unequally angular, drying stramineous-brown, 1.3–3.0 mm in diam. in lower part, primary branched copiously pinnate, elongate-deltoid. Axillary leaves ovate-elliptic, 1.2–1.5 × 0.5–0.7 mm, base obtuse, margin ciliate up to middle, rest entire. Ventral leaves ovate-oblong, 1.4–2 × 0.5–0.7 mm, base obtuse, acroscopic base ciliate, rest entire and revolute, basiscopic base with few cilia, apex acute. Dorsal leaves decurrent, 0.8–1.3 × 0.3–0.6 mm, unequally attenuate, subfalcate, subacute,
only older leaves ciliate at base, rest entire and younger ones entire throughout. Strobili solitary, terminal, compact, 8–12 × 1–2 mm. Sporophylls monomorphic, ovate, cordate at base, margin denticulate or entire, apex abruptly acute. Megaspores reddish-brown, surface papillate; microspore reddish-brown, surface papillate.

Ecology. On damp sheltered earth banks at lower elevation. Alt. 200–1200 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: LC (Fraser-Jenkins et al. 2015).

General distribution. INDIA (Bihar).

Chromosome number. not available data.

Selected specimens examined:

“Nepal n. 1397, Herb. Geheed, Oktbr. 1909” (B); “Nepalia, Wallich s.n.”(K);
“Mountain Nepalia, E.J.C. n. 125” (E, photo); “Nepalia s.n.” (E00670612, photo);
“Nepalia, 1823, Wallich 125” (K, photo); “Nepalia, 1829, Wallich 125” (K, photo);
“Belsot a Sogaret, 130 m, 9 Nov 1954, A. Zimmermann 2153” (KYO, photo).

W Nepal: DANG: “Budamar, on moist and chedy place, alt. 310 m. 29 Sep 1982, N.P. Manandhar 8577” (KATH); “Kwera Panii, Dang, on shady and rocky places, alt. 600 m, 10 Mar 1976, N.P. Manandhar, P.M. Regmi 204” (KATH); “Between Kurpani and Ghorai, growing on damp sheltered earth banks, alt. 4000 ft, 4 Sep 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 1332” (US, photo; KYO, photo; E00670606).

C Nepal: GULMI: “Gundi Khola, Kali Gandaki River, alt. 2500 ft, 13 Oct 1954. Stainton, Sykes, L.H.J. Williams 8929” (E, photo).

SYANGJA: “Roadbank at Galyang village, S of Waling, N of Tansen, on road between Pokhara and Butwal. 25 Sep 1997. C.R. Fraser-Jenkins et al. 25578 (FN 1556)” (US, photo).

PALPA: “Argali 833275, on moist slope strobilus green, alt. 800 m, 27 Nov 1973, D.P. Joshi, M.M. Amatya 73/105a” (KATH).

CHITAWAN: “Chitawan, Churia hills, Shorea forest undergrowth, 2000 ft., 14 Jun 1975, Laurie 77” (K); “North-East face of Narayani Ghat, alt. 213–360 m, 3 Jan 1977, s.n., 500” (KATH); “Damp, rocky sides of small stream-gully at Lambola Khola, c. ½ km S of Belbas (Satara Kilo) village, 18 km S. of Mugling on road to Narayanghat, S. W. of Kathmandu, alt. 350 m, 20 Jan 2000, C.R. Fraser-Jenkins 28396 (FN 4371)” (US, photo).

Selaginella involvens (Sw.) Spring
Figs 2(3A–C), 9D, 17

≡ Lycopodium involvens Sw., Syn. Fil. 182. 1806.
≡ Lycopodioides involvens (Sw.) Kuntze, Revis. Gen. Pl. 1: 826. 1891. Type. JAPAN.

Description. Plants 15–45(–65) cm, with creeping subterranean rhizome and stolons; leaves on rhizome and stolons scale-like, pale yellow. Rhizophores restricted to basal part. Main stems branched from middle upward, pinnately branched, stramineous, unbranched main stem 3–20 cm tall, 1–1.5 mm in diam. in lower part, terete, not sulcate, glabrous; primary leafy branches 7–12 pairs, 2 or 3 times pinnately branched, secondary branches 1 or 2 times pinnately branched. Axillary leaves ovate to triangular, 1.1–1.6 × 0.4–1.1 mm, base exauriculate, margin denticulate in basal to middle part, to upper entire, apex acute. Ventral leaves ovate to triangular, 1.4–2.4 × 0.4–1.4 mm, basiscopic base rounded, margin entire, acroscopic base enlarged, broader, overlapping stem and branches, margin denticulate, falsely two nerved, apex subacute or apiculate. Dorsal leaves ovate-triangular or ovate-elliptic, 0.6–1.2 × 0.2–0.5 mm, slightly carinate, base cuneate, margin denticulate, apex long acuminate to shortly aristate. Strobili solitary, terminal, compact, tetragonal, 5–15 × 1–1.4 mm. Sporophylls monomorphic, ovate-triangular, margin denticulate, apex acuminate. Megaspores whitish or brown, with equatorial flange, surface with spinulose microsculptures; microspores yellowish orange, surface verrucate with blunt spines.

Ecology. Epilithic or xerophytic, in damp forests or on moss covered boulders and cliffs, evergreen or seasonally green. Alt. 650–3000 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: not available data.

General distribution. BHUTAN, CHINA (Anhui, Chongqing, Fujian, Gansu, Guangdong, Guangxi, Guizhou, Hainan, Henan, Hubei, Hunan, Jiangxi, Shaanxi, Sichuan, Taiwan, Xizang, Yunnan, Zhejiang), INDIA (N, E, C and S), JAPAN, KOREA, LAOS, MALAYSIA, MYANMAR, PHILIPPINES, SRI LANKA, THAILAND, VIETNAM.

Chromosome number. x=9 (Kuriachan 1963); 2n=18 (Jermy et al. 1967).

Selected specimens examined:

C Nepal: NUWAKOT, RASUWA: “Between Betrawati, Nuwakot Dist. and Ramche, Rasuwa Distr., on the rock in the open place, alt. 1450 m, 11 Jun 1983, H. Tabata et al. 18029” (KYO, photo); “Bagmati Zone, beyond Dhunche, in gorge of Trisuli River (coming down from Goisaiyund), Northeast facing slopes, on mossy rocks in deep shade, alt. 1700 m, 17 Sep 1966, D.H. Nicolson 2507” (US).

DOLAKHA: “Shemma-Yakuwa-Lamobagar, alt. 1100–1500 m, 1 Aug 1977. H. Ohashi et al. 771897” (TI, photo); “Jire-Those, shade place, alt. 6300 ft, 23 Sep 1964. Banerjee, Shrestha, Upadhyay 2884” (US, photo); “Chumro, alt. 2200 m, 26 Sep 1976, Y. Suehiro 2326” (KYO, photo); “Près de Gongar, alt. 1280 m, 14 Sep 1956, A. Zimmermann 1256” (KYO, photo).

KASKI: “Tamage (1730m)–Banjan (2035m), alt. 2100 m, 28°15’22”–13’03”N, 83°49’56”–48’44”E, 9 Aug 1999, M. Mikage et al. 9965056” (TI, photo); “Pokhara to Hyenda, alt. 1000–1100 m, 20 Sep 1976, Y. Suehiro 84” (PE); “Pokhara to Hyenda, alt. 1000–1100 m, 20 Sep 1976, Y. Suehiro 82” (TI, photo); “l.c. Y. Suchiro 83” (KYO, photo).

E Nepal: TERHATHUM: “Basantapur-Chitre, on mossy tree trunk in forest, alt. 2300–2400 m, 7 Jun 1972, H. Kanai et al. 725490” (TI, photo; KYO, photo); “Kunja, 27°13’N, 87°52’E, alt. 2100 m, J.F. Dobremez DBR NEP 1315” (E00754781, E00668259).

SANKHUWASABHA: “Seduwa to Kasuwa Khol, prostrate under rock, alt. 3500 ft, 6 May 1965, Banerjee, Upadhyay, Baskola 3406” (US, photo); “Seduwa, in shade under big rock, alt. 5500 ft, 8 Aug 1965, Banerjee, Upadhyay, Baskola 3366” (US, photo); “Seduwa 2100 m – Bhaluhhop 2400 m, 5 Jun 1972, H. Kanai et al. 725089” (KYO, photo).

TAPLEJUNG: “Shewaden 2600 m – Mewa Khol 2100 m, on mossy rock in light shade, c. 2200 m, 29 Jun 1972, H. Kanai et al. 725353” (KYO, photo); “Zongi-Iladanda, 12 Nov 1963, H. Hara et al.” (TI, photo).

SOLUKHUMBHU: “near Namche, in shade andmoist place, alt. 8000 ft, 9 May 1965, Banerjee et al. 3415” (US, photo).

Selaginella pallida Spring
Figs 3(1A–C), 9E, 18

Description. Stems 30–50 cm, long creeping. Rhizophores at intervals throughout length of main stem, borne on ventral side in axils of branches. Main stems branched throughout, pinnately branched, 1.2–2.0 mm in diam. in lower part. Axillary leaves ovate, 1.2–1.5 × 0.6–0.8 mm, dilated at base, dentate-serrulate, margin entire or upper part subentire, apex acuminate. Ventral leaves ovate, 2.0–2.8 × 1.1–1.3 mm, basiscoic base ovate, margin slightly dentate, aroscopic base dilated at base, margin dentate-serrulate, apex acuminate. Dorsal leaves ovate, 1.6–2.1 × 1.0–1.2 mm, in base cordate, margin serrulate-denticulate, falcate, apex acuminate-aristate. Strobili solitary, terminal, compact, 5–12 × 1–2 mm. Sporophylls monomorphic, ovate, acuminate, margin denticulate, sub-pellucid, apex acuminate. Megaspores light yellow, surface verrucate; microspores red, surface smooth, with echinae.

Distribution in Nepal. C, E.
Nepalese threatened status: not available data.

General distribution. BHUTAN, CHINA (Xizang). INDIA (Himachal Pradesh, Manipur, Meghalaya, Uttarakhand).
Chromosome number. x=10, 2n=20 (Fraser-Jenkins and Matsumoto 2015).

Selected specimens examined:
DHADING: “Rithey Pani (between Mugling and Pokhara), alt. c. 500 m, 27 Sep 1986, T. Nakaike 1948” (PE 01622281);
KASKI: “Dhampus, Pokhara, alt. 1000–1500 m, 10 Nov 1988, T. Nakaike 3781” (PE); Karanha, near Pokhara, alt. c. 900 m, 9 Nov 1988, T. Nakaike 3740” (PE); “Pokhara, alt. 900 m, 18 Jun 1967, H. Kanai et al. 26128” (KYO, photo).
Figure 3. Morphological diversity of the leaves of Nepalese *Sealcinella* species 1A–C *S. pallida* (Nakaike 3740, PE) 2A–C *S. remotifolia* (Nakaike 3522, PE) 3A–C *S. semicordata* (Jenkins s.n., PE). A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.

PALPA: “Bategora, between Butwal and Pokhara, alt. c. 700 m, 9 Nov 1988, T. Nakaike 3737” (PE).

KATHMANDU: “Phulchoki, south of Kathmandu, on bank along path in shade, alt. c. 2200 m, alt. 2200–2700 m, 15 Jul 1972, H. Hara, K. Iwatsuki et al. 725556” (KYO, photo); “Sundarijal-Mulkharka, alt. c. 1600 m, 4 Nov 1979, T. Nakaike 418” (PE); “Gokarna Ban, alt. c. 1370 m, 12 Oct 1979, T. Nakaike 130” (PE); “Tare Bhir, alt. c. 1400–1900 m, 4 Oct 1979, T. Nakaike 59” (PE); “Jamachowk, alt. c. 1500 m, 1 Oct 1986, T. Nakaike 2169” (PE); “Nagarjun, alt. c. 1400 m, 26 Aug 1986, T. Nakaike 1092” (PE); “l.c. T. Nakaike 1124” (PE); “Dakshin Kali, alt. c. 1500 m. 13 Sep 1986. T. Nakaike 1438” (PE); “Chandragiri, alt. 1600–2000 m, 9 Oct 1986, T. Nakaike 2491” (PE); “Gokarna Ban, Kathmandu, alt. c. 1350 m, 29 Oct 1988, T. Nakaike 3587” (PE); “first forested damp stream gully above road, 6 km N from Pharping Bazar, N of Bansbari, 1 km S of Chalangkhel, NE side of Neipane Dara (hill), on W side of Bagmati River, c. 10 km S of Kathmandu on road to Dakshin Kali temple, 20 Jul 1996, C.R. Fraser-Jenkins et al. 24100 (FN 78)” (US, photo).

BHAKTAPUR: “Changu Narayan, alt. 1400–1500 m, 22 Sep 1986, T. Nakaike 1801” (PE); “Sankhu, alt. c. 1400 m, 24 Aug 1986, T. Nakaike 1061” (PE 01622270); “Nagarkot, alt. c. 1800 m, 16 Sep 1986, T. Nakaike 1526” (PE);

KAVREPALANCHOK: “Panauti, alt. c. 1400 m, 4 Oct 1986, T. Nakaike 2373” (PE).

LALITPUR: “Phulchoki, south of Kathmandu, alt. 2200–2700 m, on bank along path in shade, alt. c. 2200 m, 15 Jul 1972, H. Hara et al. 725556” (TI); “Godawari (1600)–Phulchauki (2500m), alt. 1600–2500 m, 26 Jun 1967, H. Hara et al. s.n.” (TI, photo).

RAMCHAP: “Between Bhandar and Kenja, alt. 1700–2100 m, 7 Oct 1988, T. Nakaike 3166, 3167” (PE);

E Nepal: BHOJPUR: “en route from Phedi to Sagangma, Along Irkhuwa khola, subtropical semievergreen forest zone, on the mossy rock, alt. 1160 m, 27 Jun 1978, H. Tabata et al. 10989” (PE); Dingla 1000 m-Doban 800 m, on rather dry bank of part in shade, alt. 800–1000 m, 2 Jul 1972, H. Kanai et al. 725457” (TI, photo; KYO, photo);

Selaginella remotifolia

Figs 3(2A–C), 9F, 19

Type. INDONESIA. Sumatrae regionemylvaticum prov. Angkolaec superioris, alt. 1–3000 ft., F.W. Junghuhn (holotype: L).

Description. Plants 15–45 cm, creeping, fertile branches erect. Rhizophores at intervals throughout length of creeping stem and branches, on dorsal side in axils of stem branches. Main stems branched above at base, 0.5–1.5 mm in diam. in lower part. Stems oval or terete, sulcate, glabrous, with single vascular bundle. Axillary leaves ovate-lanceolate or elliptic, 1.4–2.4 × 0.5–1.2 mm, base cuneate, margin slightly denticulate, apex slightly obtuse. Ventral leaves spreading, ovate-lanceolate, 1.8–3(–3.6) × 0.8–1.4(–1.7) mm, base rounded, acroscopic base not overlapping on stem and branches, margin minutely denticulate or subentire, apex acute. Dorsal leaves elliptic-lanceolate or ovate-elliptic, 1.4–2(–2.8) × 0.4–0.9(–1.2) mm, base uniauriculate, margin subentire or minutely denticulate, apex long acuminate. Strobili solitary, terminal and lateral to branches, compact, tetragonal, 3.5–6 × 1–3 mm. Sporophylls monomorphic, ovate-lanceolate, carinate, margin denticulate, apex acuminate. Mega-spores gray-white, surface irregular reticulum; microspores pale yellow, surface with triangular and striped spines.

Ecology. Terrestrial, evergreen, sub-open forest banks, previously overlooked or on slopes in shade. Alt. 1800–2650 m.

Distribution in Nepal. C, E.

Nepalese threatened status: EN (Fraser-Jenkins et al. 2015).

General distribution. CHINA (Chongqing, Fujian, Guangxi, Guizhou, Hubei, Hunan, Jiangxi, Sichuan, Taiwan, Yunnan, Zhejiang), NE INDIA, INDONESIA (Sumatra), JAPAN, PHILIPPINES.

Chromosome number. Not available data.

Selected specimens examined:

C Nepal: DOLAKHA: “between Kenja and Sivalaya, Dolakha, alt. c. 2300 m, 23 Oct 1988, *T. Nakaike 3522*” (PE01722894).

E Nepal: TEHRATHUM: “Chauki (2650 m)–Tute (2480 m)–Basantapur (2300 m), 27°12’35”N, 87°28’01”E–27°07’00”N, 87°26’00”E, 17 Aug 1999, *K. Fujikawa et al.*” (PE01722895); “Tinjure-Chauke, alt. 2700 m, 7 Aug 1972, *H. Kanai et al. 725131*” (E00659376; KYO, photo); “Chauki (2650 m)–Tute (2480 m)–Basantapur
Selaginella semicordata (Wall. ex Hook. & Grev.) Spring
Figs 3(3A–C), 9G, 20

(Selaginella burghallii R. Sim., Priced Cat. Ferns 6: 61. 1859, nom. nud.)

Description. Stems to 150 cm, creeping, slender. Rhizophores at intervals throughout length of creeping stem and branches, on dorsal side in axils of stem branches. Stem slender, sulcate. Main stems, branched throughout, arise alternately from base of plant, branches short, pinnately, flabellate, distant located. Axillary leaves oblong-lanceolate, 2.1–2.6 × 1.3–1.8 mm, base rounded-cuneate, apex truncated; on branches, obovate, 1.3–2.0 × 0.6–0.9 mm. Ventral leaves oblong-lanceolate, 1.9–2.5 × 0.7–1.2 mm, rounded at base, acroscopic base slightly enlarged, not overlapping stem and branches, margin in apex part suberose, apex subobtuse to subacute. Dorsal leaves oblong, 1.5–1.8 × 0.5–0.7 mm, imbricate, in basal part oblique, margin entire to minutely denticulate at apex, apex shortly cuspidate. Strobili solitary, terminal, tetragonal, compact, 5.0–15 × 1.5–2.3 mm. Sporophylls monomorphic, 1.6–2 × 0.8–1 mm, ovate, keeled, margin entire, apex acute. Megaspores dark-brown, surface verrucate; microspores pale, surface exine with white, translucent wing-like perispore supported with hook-like structure.

Ecology. Terrestrial, growing in paddy field or marshland or shady areas among the grasses with abundant water content. Restricted low altitude species of wet. Alt. 100–150 m.

Distribution in Nepal. C, E.
Nepalese threatened status: EN (Fraser-Jenkins et al. 2015).
General distribution. BANGLADESH, INDIA (Assam State, Bihar, Meghalaya, Mizoram, Nagaland, Tripura, West Bengal), MYANMAR.
Chromosome number. Not available data.

Selected specimens examined:

Selaginella helvetica (L.) Spring
Figs 4(1A–C), 9H, 21

≡ Selaginella helvetica (L.) Link, Fil. Spec. 159. 1841, later isonym.

Description. Stems 5–15(–25) cm, short-creeping, fertile stems erect. Rhizophores at intervals throughout length of creeping stem and branches, borne on ventral side in axils of branches. Main stems branched throughout, 0.2–0.4 mm in diam. in lower part. Stems stramineous, stem angulate, sulcate, primary leafy branches 2–5 pairs, simple, forked, or once pinnately branched, branchlets sparse, branches arranged on main stem 2–3 cm apart. Axillary leaves ovate-lanceolate or elliptic, 1.4–1.6 × 0.4–0.8 mm, base exauriculate, margin ciliolate. Ventral leaves oblong-ovate or broadly ovate, 1.6–2 × 0.8–1.2 mm, leaves on branches spreading or slightly deflexed, basiscopic margin ciliolate, acroscopic base enlarged, broader, overlapping stem and branches, margin ciliolate, apex acute or aristate, often bent upward. Dorsal leaves symmetrical or not, ovate or ovate-lanceolate, 1.2–1.6 × 0.5–0.8 mm, base obtuse, margin ciliolate, apex long acuminate or aristate, often reflexed. Fertile branches erect, 3–6 cm. Strobili solitary or forked, terminal, lax or lax in lower partion, and compact in upper part, cylindric, 12–35 × 2–4 mm. Sporophylls unlike sterile leaves or similar, margin ciliolate, apex long acuminate. Megaspores orange or yellowish orange, surface verrucate; microspores orange or orange-red, surface verrucate.

Ecology. On moss-covered cliffs, in rock crevices, on damp shaded banks in mixed forests, to mossy areas. Alt. 2300–4000 m.

Distribution in Nepal. W, C.
Nepalese threatened status: NT (Fraser-Jenkins et al. 2015).

General distribution. EUROPE, RUSSIA, JAPAN, KOREA, MONGOLIA, CHINA (S Gansu, Hebei, Heilongjiang, Jilin, Liaoning, Nei Mongol, Qinghai,
A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Figure 4. Morphological diversity of the leaves of Nepalese *Selaginella* species 1A–C *S. helvetica* (Zhang 0638, PE) 2A–C *S. pallidissima* (Zhang 2746, PE) 3A–C *S. laxistrobila* (Nakaike 1319, PE). A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.

Shaanxi, Shandong, Sichuan, Xizang, Yunnan), INDIA (Himachal Pradesh, Uttarakhand, West Bengal).

Chromosome number. 2n=18 (Manton 1950; Jermy et al. 1967).

Selected specimens examined:
Selaginella pallidissima Spring

Figs 4(2A–C), 9I, 22

Description. Stems 15–35 cm, creeping. Rhizophores at intervals throughout length of main stem, borne on ventral side in axils of branches. Main stems branched throughout, pinnately branched, 0.3–0.5 mm in diam. in lower part. Main stems stramineous or reddish, angulate, sulcate. Axillary leaves ovate, 2–3 × 1–1.5 mm, base subcordate, margin minutely denticulate, apex acuminate. Ventral leaves ovate or ovate-triangular, 1.8–3.2 × 1.1–1.8 mm, basiscopic base rounded, margin denticulate, acroscopic base enlarged, overlapping stem and branches, margin denticulate or ciliate in basal portion, apex acute. Dorsal leaves ovate or ovate-lanceolate, 1.5–2.2 × 0.6–1.3 mm, base subcordate, margin minutely denticulate or ciliate, apex acuminate. Strobili solitary or rarely paired, terminal, 6–10 × 1–2 mm. Sporophylls dimorphic, dorsal sporophylls ovate, oblique, in base subcordate, margin shortly ciliate or denticulate, apex acute, ventral sporophylls ovate or oblong-ovate, not carinate, margin denticulate. Megaspores sulfur colored or yellowish orange, surface verrucose, microspores orange-red, surface covered with spinulose microsculpture.

Ecology. Terrestrial or epilithic, on steep, open, rather dry banks among grasses, seasonally green. Alt. 2700–3300 m.

Distribution Nepal. W, C, E.

Nepalese threatened status: LC (Fraser-Jenkins et al. 2015).

General distribution. CHINA (Sichuan, Yunnan, Xizang), INDIA (Uttar Pradesh, Himachal Pradesh).

Chromosome number. Not available data.

Selected specimens examined:

A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

DOLPA: “Rohagaon, Suli Gad, alt. 9500 ft, 13 Sep 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 3364” (E, photo; US, photo; KYO, photo); “l.c. 3365” (KYO, photo); “Near Hurta, Bhalu Lekh, alt. 9000 ft, 5 Aug 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 3178” (E; KYO, photo).

DOTI: “Dotu-Siligarhi, foliage red brown, in rocky stream bed, alt. 4500 ft, 1 Apr 1967, N. Ecker-Racz” (US, photo).

C Nepal: MUSTANG: “Tukucha, Kali Gandaki, alt. 10500 ft, 13 Jun 1954, J.D.A. Stainton, W.R. Sykes and L.H.J. Williams 1110” (E, photo).

Selaginella laxistrobila K.H. Shing

Figs 4(3A–C), 10A, 23

Description. Stems 1–6 cm, with creeping main stems and few upright stems over a short distance. Rhizophores restricted to lower part of stem. Main stems branched from near base upward, 0.2–0.4 mm in diam. in lower part. Stems stramineous, angulate, sulcate. Axillary leaves elliptic, 1–1.8 × 0.3–0.7 mm, base exauriculate, margin slightly denticulate, apex acute, not aristate. Ventral leaves ovate-triangular, 1.8–2.3 × 0.8–1.2 mm, acroscopic base enlarged, broader, slightly overlapping stem and branches, margin ciliolate, apex acute. Dorsal leaves ovate, 1.2–1.8 × 0.6–0.8 mm, base subcordate or obtuse, margin ciliolate, apex acuminate. Sporophylls dimorphic, similar to sterile leaves in form and arrangement. Strobili solitary or forked, terminal, lax, dorsiventrally complanate, 10–20 × 3–5 mm. Ventral sporophylls ovate, margin shortly ciliolate, apex acuminata; dorsal sporophylls ovate-lanceolate, margin shortly ciliolate, apex acuminata. Megaspores orange or yellowish orange, surface verrucate; microspores orange, surface verrucate.

Ecology. Terrestrial, evergreen, under shrubs in damp places mixed forests, on rocks, soil banks. Alt. 2650–3200 m.

Distribution in Nepal. C, E.

Nepal threatened status: not available data.

General distribution. CHINA (Sichuan, Yunnan), INDIA.

Chromosome number. Not available data.

Selected specimens examined:

C Nepal: RASUWA: “between Ghora Tabela and Lama Hotel. 2 Sep 1986, T. Nakaike 1319” (PE).

E Nepal: SOLUKHUMBU: “between Goem and Junbesi, Solukhumbu, alt. 2650–3200 m, 9 Oct 1988, T. Nakaike 3256” (PE).
Selaginella bisulcata Spring
Figs 5(1A–C), 10B, 24

≡ Lycopodioides bisulcata (Spring) Kuntze, Revis. Gen. Pl. 2: 826. 1891, as “bisulcatum”. Type. INDIA. N.E. India, Meghalaya, Khasia, W. Griffith (mislabelled as “Gorval”, i.e. Garhwal, Uttarakhand) (holotype: K).

Description. Stems 20–45 cm, creeping. Rhizophores at intervals throughout stems, located on ventral side in axis branches. Main stems branched from near base upwards, in basal part main stem 1.2–1.8 mm in diam. Main stems subquadrangular, sulcate, branched throughout their length, primary leaves branches arranged 5–8 pairs. Axillary leaves elliptic, 3–4.6 × 1.1–1.6 mm, base exauriculate, margin denticulate or sparsely ciliolate. Ventral leaves asymmetrical, slightly ascending or spreading or deflexed, oblong, 3.2–5 × 1.2–2 mm, apex apiculate, in base margin entire or sub-entire, denticulate at apex, leaves not overlapping stem and branches, margin ciliolate or denticulate in basal and apical portions, entire in middle. Dorsal leaves asymmetrical, 1–2.4 × 0.6–1.5 mm, base obliquely cuneate, margin sparsely ciliolate, apex mucronate or aristate with arista curved, up to 1/2–4/5 as long as leaf, 0.4–0.8 mm. Strobili solitary, terminal, compact, 6–10 × 3.5–5.5 mm. Sporophylls dimorphic, ventral sporophylls ovate-lanceolate or oblong-ovate, in base dilated, margin ciliolate or lacerate-ciliolate; dorsal sporophylls oblong-lanceolate, carinate, margin ciliolate, apex acuminate or aristate, with sporophyll-pteryx incomplete and ciliolate. Megaspores white-brown, surface smooth; microspores orange, surface verrucose.

Ecology. Evergreen, often in open dry slope areas, or in a little shade in light forest. Alt. 1500–2700 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: not available data.

General distribution. BHUTAN, CHINA (Sichuan, Yunnan), INDIA (Assam State, Sikkim, Manipur, Meghalaya, Nagaland, West Bengal), INDONESIA, MYANMAR, THAILAND, VIETNAM.

Chromosome number. not available data.

Selected specimens examined:

KATHMANDU: “Bagmati Zone, Kathmandu Distr., Second khola from the W. side of valley, at edge of low forest, c. 150 m. above and ¼ km SE of Bhangeri, above Gagal Phedim, N.W. of Sankhu, N. E. Kathmandu, 2 Oct 2001, C.R. Fraser-Jenkins, G.B. Tamang 29346 (FN 5321)” (US, photo); “Bhangeri, c. 1800–2100 m, 2 Oct
Figure 5. Morphological diversity of the leaves of Nepalese Selaginella species 1A–C S. bisulcata (Nakaike 3786, PE) 2A–C S. pennata (Nakaike 3507, PE) 3A–C S. chrysocaulos (Nakaike 1058, PE). A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.

1986, T. Nakaike 2267” (PE 01622219); “Bhangeri, c. 1800–2100 m, 2 Oct 1986, T. Nakaike 2306” (PE 01622220).

KASKI: “Dhampus, Pokhara, 1000–1500 m. 10 Nov 1988, T. Nakaike 3786” (PE 01622148); “Panchase Lekh (Kaski Distr.), n. 834282, alt. 2350 m, 12 Dec 1973, D.P.
Joshi, M.M. Amatya 73/1170” (KATH); “Pathana (Dhampus)–Tolka, alt. 1850–2050 m, 8 Jul 1983. H. Ohba et al. 8330208” (TI, photo); “Banjan (2035m)–Mt. Panchase (2500m), alt. 2120 m, 28°13’03”–15°12’N, 83°49’56”–47°54’E. 10 Sept 1999, M. Mikage et al. 9965087” (TI, photo).

DOLAKHA: “Tandi, alt. 1500 m. 9 Sep 1954, A. Zimmermann 1132” (KYO, photo).

E Nepal: **ILAM:** “near Ilam, Ilam, c. 1500–2000 m, 5 Nov 1986, T. Nakaike 3646” (PE 01622149); “Ilam District, wooded slopes with Cryptomeria trees, c. ½ km W of Pashupatinagar, above main road to Ilam, ENE of Ilam, 8 Sep 2001, C.R. Fraser-Jenkins, G.B. Tamang 5405” (US, photo); “Ilam Distr.: In Oak-forest on slopes above streams, between Chitregaon and Manebhanjyang, c. 4–5 km NE of Pashupatinagar, on footpath to Manebhanjyang, near Indian border, NE of Ilam, 23 Oct 2001, C.R. Fraser-Jenkins 29608” (US, photo); “Mai Pokhari, 27°00’N, 87°57’E, alt. 2000 m, 28 Sep 1971, J.F. Dobremez DBR NEP 1233” (E00670678); “Mai Majuwa-Mai Pokhari-Dhara Pani, 4 Dec 1963, H. Hara et al.” (TI, photo; KYO, photo); “Ilam, 26°57’N, 87°57’E, alt. 1450 m, 28 Sep 1971, J.F. Dobremez DBR NEP 1202” (E00670573); “Ilam District, Pashupatinagar, alt. 2300 m, 8 Oct 2001. C.R. Fraser-Jenkins & G.B. Tamang 29430 (FN 5405)” (KATH).

TAPLEJUNG: “Dumhan, by the Tamur River, alt. 700 m, 31 Sep 1963, G. Murata, M. Togashi, T. Tuya” (TI, photo).

SOLUKHUMBU: “(Solukhumbu Distr.)–Janakpur Zone (Ramechhap Distr.), Namikhil (2300 m)–Chamare (1900 m)–Likhu (a bridge) (1550 m)–Bhandar (2300 m), alt. 1550–2300 m, 27°33’N, 86°23’E –27°34’N, 86°20’E, 10 Sep 1985, H. Ohba et al. 8581505” (TI, photo).

Selaginella pennata (D. Don) Spring

Figs 5(2A–C), 10C, 25

≡ *Selaginella suberosa* Spring, Monogr. Lycop. 1: 253, no. 191. 1850. **Type.** INDIA. Hindustania superiori, Gorval [error for the Khasi Hills]. Griffith s.n. (holotype: K; isotype: P?).

Description. Stems 15–35 cm, suberect. Rhizophores long, thick, restricted to basal and lower part of main stem. Main stems branched slightly above bottom of stem, not very regularly pinnately branched. Stems terete, not sulcate or sulcate in upper
part. Axillary leaves ovate, 1.4–2.3 × 0.6–1.2 mm, base exauriculate, margin ciliolate in basal part, upward subentire, or with rarely cilia. Ventral leaves oblong or oblong-ovate, 1.6–3 × 0.7–1.4 mm, base rotundate, acroscopic base rounded, not overlapping stem and branches, margin sparsely shortly ciliolate, apex acute or apiculate. Dorsal leaves elliptic, sub-falcate, oblique, entire, margin rarely ciliolate, apex aristate with arista curved. Strobili solitary or pairs, terminal, compact, 4–10(–12) × 2.5–5 mm. Sporophylls dimorphic, dorsal sporophylls ovate-oblong, margin denticate, apex acute, ventral sporophylls ovate, margin entire or denticulate, apex acute. Megaspores whitish, gray or dark brown, surface globose; microspores pale yellow, surface verrucate.

Distribution Nepal. C, E.

Nepalese threatened status: not available data.

General distribution. CHINA (Yunnan), INDIA (Assam, Manipur, Meghalaya, Sikkim, West Bengal), MYANMAR, THAILAND.

Chromosome number. Not available data.

Selected specimens examined:

DHADING: “Birjet, alt. 1620 m, on mossy rock. 4 Nov 1989. N.P. Manandhar 12962” (KATH).

RASUWA: “Mani gaon (on way to Ramche), terrestrial, grown on sandy and wetty slope by the way side abundant, alt. 1230 m, 29 Sep 1977, Mrs. V.L. Gurung et al. 77/600” (KATH); “Mani gaon (on way to Ramche), terrestrial, grown on sandy and wetty slope by the way side abundant, alt. 1230 m, 29 Sep 1977, Mrs. V.L. Gurung et al. 77/601” (KATH); “Rasuwa Distr.: in forest, Domen to Bompu, S. side of Langtang River, between Syabrubensi and bridge below Lama Hotel, lower Langtang Valley, alt. 1600–2200 m. 21 Aug 2001. C.R. Fraser-Jenkins & G.B. Tamang 29198 (FN 5173)” (US, photo).

to); “Pokhara to Hyenda, alt. 1000–1100 m, 20 Sep 1976, Y. Suehiro 93, 94” (KYO, photo); “Naudanda, alt. 1300 m, 21 Sep 1976, Y. Suehiro 2040” (KYO, photo).

TANAHUN: “among boulders by stream in forest on W. side of Khane kholo valley, between Dumrekharka village and W. part of Chinkeshwori Darrah(mountain) S. of Khanekhola village, c. 3 km W of Anbu Khaireni, W. of Mugling on Damauli and Pokhara, 7 Oct 2000, C.R. Fraser-Jenkins 28630 (FN 4605)” (US, photo).

KATHMANDU: “Jarkini, alt. 1600–1700 m. 29 Sep 1986, T. Nakaike 2041” (PE 01622286).

RAMECHAP: “between Bhandar and Kenja, alt. 2100–1700 m. 7 Oct 1988, T. Nakaike 3201” (PE 01622286).

UDAYAPUR: “vers le col de Sukhchauri, boisés exposés vers l’est, 1000 m, 7 Nov 1954, A. Zimmermann 2100” (KYO, photo).

SANKHUWASABHA “Simbu, 27°22’N, 87°47’E, alt. 1800 m, 05 Oct 1971, J.F. Dobremez DBR NEP 1337” (E00754787).

PANCHTAR: “Ektin, 27°12’N, 87°53’E, alt. 1500 m, 2 Oct 1971, J.F. Dobremez DBR NEP 1300 B” (E00670574).

MORANG: “Chisapani, on the moist place, stem red rhizome long, alt. 600 m, 26 Sep 1971, D.P. Joshi 28” (KATH); “Chisapani, alt. 500 m, 26°50’N, 87°55’E, 26 Sep 1971, J.F. Dobremez DBR NEP 1169” (E00670671).

Selaginella chrysocaulos (Hook. & Grev.) Spring

Figs 5(3A–C), 10D, 26

Description. Stems 5–25 cm, evergreen or seasonally green, erect, with elongate tuber at base. Rhizophores restricted to base of stem or borne in lower part. Main stems branched from near base or from lower part upward, in basal part main stem 0.5–1 mm in diam. Stems stramineous, terete or subquadrangular, primary leafy branches 6–12 pairs, forked or once or twice pinnately branched, branchlets sparse. Axillary leaves asymmetrical, narrowly ovate or narrowly elliptic, 2–3 × 1–1.4 mm, base exauriculate, in base margin ciliolate, apex blunt-acute. Ventral leaves asymmetrical, ovate-lanceolate, 1.4–2 × 0.8–1.4 mm, leaves on branches slightly ascending or spreading, margin sparsely minutely denticulate or ciliolate at base, apex acute. Dorsal leaves asymmetrical, narrowly ovate, 0.6–1 × 0.3–0.5 mm, base subcordate or obliquely cordate, carinate or not carinate, in basal part margin denticulate or ciliolate, apex acuminate or aristate. Strobili solitary, terminal, compact, 3–5 × 1–1.5 mm. Sporophylls slightly or strongly dimorphic, ventral sporophylls ovate, margin denticulate; dorsal sporophylls with sporophyll-pteryx incomplete and ciliolate, margin ciliolate. Megaspores yellowish, surface verrucate; microspores orange, surface verrucate.

Ecology. On clay soil or on damp shaded banks in forest. Alt. 1400–2900 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: not available data.

General distribution. BHUTAN, CHINA (Guizhou, Sichuan, Xizang, Yunnan), INDIA (Darjeeling, Himachal Pradesh, Jharkhand, Jammu and Kashmir, Manipur, Meghalaya, Sikkim, Nagaland, Uttarakhhand, West Bengal), MALAYSIA (Peninsular), MYANMAR, PAKISTAN, VIETNAM.

Chromosome number. 2n=24 (Loyal 1976; Loyal and Kumar 1984).

Selected specimens examined:
Nepal: “Ghunre, alt. 2400 m, 9 Jul 1972, A. Maire AMA 9” (E00670585); “9 Jul 1972, A. Maire, AMA 8” (E00754794).

W Nepal: MUGU: “Dalupata, Carpinus faginea forest, aspect N 40°W, alt. 2220 m, Incination 35° (S8301), 1 Oct 1983, H. Tabata et al. 20718” (KYO, photo); “Between Toli and Rara, Aesculus indica forest along Khatyar Khola river, alt. 2400 m, 8 Sep 1983, H. Tabata et al. 24936” (KYO, photo).

DOLAKHA: “Jarsa-jiri above Sikri, Bagmati, alt. 8000 ft, 21 Sep 1968, Banerjee, S. Shrestha 2850” (US, photo); “En route from Thore Pati, alt. 3560 m to Kutumsang, alt. 2500 m and Bhanjang, alt. 2150 m, alt. 2400 m, 9 Jun 1983, H. Tabata et al. 18475” (KYO, photo); “Rolwaling Khola, Simigaon (1950m)–Sekpa (2300m)–
Kyalche (2700m), alt. 1950–2700 m, 31 Aug 1983, H. Obba et al. 8331658” (TI, photo; KYO, photo); “near Manga decorah, alt. 7500 ft, 13 Sep 1964, M.L. Banerjee, T.B. Shrestha, A.V. Upadhyaya 2739” (US, photo); “Khare Khola, Phedi Kharka (2100m)–Koplang (2100m)–Khanigaon (1700m), 14 Sep 1983, M. Wakabayashi, M. Suzuki, A. Akiyama 8351514 [862275]” (KYO, photo); “near Manga decorah, alt. 7500 ft, 13 Sep 1964, M.L. Banerjee, T.B. Shrestha, A.V. Upadhyaya 2739” (US, photo); “Khare Khola, Phedi Kharka (2100m)–Koplang (2100m)–Khanigaon (1700m), 14 Sep 1983, M. Wakabayashi, M. Suzuki, A. Akiyama 8351514 [862275]” (KYO, photo); “Near Jiri, Dolakha, c. 1800 m, 25 Oct 1988, T. Nakaike 3546” (PE 01634006); Jiri, Dolakha, alt. 2000–2500 m, 3 Oct 1988, T. Nakaike 3003” (PE 01593980); “Between Sivalaya and Jiri, Dolakha, alt. 1800–2000 m, 24 Oct 1988, T. Nakaike 3527” (PE 01634003); “Between Jiri and Sivalaya, alt. 1800–2000 m, 5 Oct 1988, T. Nakaike 3089” (PE 01593984); “Bhote Kosi, vers Simigaon, alt. 1450 m, 14 Sep 1954, A. Zimmermann 1295” (KYO, photo).

SYANGJA: “En route from Kare to Chandrakot, alt. 1350–1400 m, 22 Sep 1976, Y. Suehiro 322” (KYO, photo).

SINDHUPALCHOK: “above Golu, alt. 2588 m. 27°54’23”N, 85°49’39”E, 11 Sep 2011, M.F. Watson et al. EKSIN 74” (E00576125)

RASUWA: “Between Dhunche and Bharku, c. 2000 m, 29 Aug 1986, T. Nakaike 1156” (PE 01634001); “l.c. 1157” (PE 01634002); “Between Lama Hotel and Shar-pugaon, c. 2600–2800 m, 3 Sep 1986, T. Nakaike 1334” (PE 01593983), “l.c. 1333” (PE 01593977), “l.c. 1274” (PE 01593976); “Near Shabru, c. 2400 m, 6 Sep 1986, T. Nakaike 1387” (PE 01593998); “Between Bharku and Syabru, c. 2000–2400 m, 29 Aug 1986, T. Nakaike 1178” (PE 01593961).

KASKI: “en route from Kare to Chandrakot, alt. 1350–1400 m, 22 Sep 1976, Y. Suehiro 32 (III-1/1)” (PE); “Between Potana and Dhumpus, on the stonehedge, alt. 1850 m, 3 Aug 1983, H. Tabata et al. 19164” (KYO, photo).

KATHMANDU: “Chandragiri, alt. 1600–2000 m, 9 Oct 1986, T. Nakaike 2474” (PE 01593957); “Jarkini, 1600–1700 m, 29 Sep 1986, T. Nakaike 2005” (PE 01593964); “Tare Bhir, alt. 1400–1900 m, 4 Oct 1979, T. Nakaike 56” (PE 01593970); “Bhangeri, alt. 1800–2100 m, 2 Oct 1986, T. Nakaike 2284” (PE 01593972); “Sankhu, alt. 1400 m, 24 Aug 1986, T. Nakaike 1058” (PE 01593962); “Tare Bhir, alt. c. 1400–1900 m, 4 Oct 1979, T. Nakaike 105” (PE 01593965); “Tare Bhir, alt. 1500–2100 m, 30 Sep 1986, T. Nakaike 2067” (PE 01593966); “Mulkharka, alt. c. 1700 m, 2 Oct 1986, T. Nakaike 2329” (PE 01634008).

LALITPUR: “Mt. Phulcoki, alt. 1800–2600 m, 17 Sep 1986, T. Nakaike 1556” (PE 01634005); “Bajrajogini, alt. 1600 m, 2 Oct 1986, T. Nakaike 2194” (PE 01593963); “Phulchoki, south of Kathmandu, on rather dry: ground in light shade, 1500 m, 15 Jun 1972, H. Hara et al. 852274” (TI photo; KYO; photo).

BHAKTAPUR: “Nagarkot, alt. c. 1800 m, 16 Sep 1986, T. Nakaike 1533” (PE 01593992).
MAKAWANPUR: “Daman (between Naubise and Hetauda), c. 2400 m. 23 Sep 1986. T. Nakaike 1861” (PE 01593973).

SANKHUWASABHA: “Khandbari (1150m)–Mani Bhanjyang (1150m)–Sekaha (1450m)–Botebus (1800m), alt. 1150–1800 m, 1954, H. Ohashi, H. Kanai” (KYO, photo); “Papung-Bir Gaon, along path in light shade, alt. 1600–2000 m, 30 Jun 1972, H. Kanai et al. 7253393” (KYO, photo); “Rive gauche de la Sun Kosi, en montaut a Chyaubaz, 1850 m, 7 Sep 1954, A. Zimmermann 1082a” (KYO, photo; PE); “Above Shinbun-Hatia Gola, alt. 1600–2100 m, 3 Aug 1977, H. Ohashi et al. 771973” (TI, photo).

DHANKUTA: “Dhankuta 1300 m – Nigale 1600 m, 4 Jun 1972, K. Kanai et al. 725057 [872266, 872271]” (KYO, photo); “Sinduwa, alt. 1100 m, 24 Oct 1963, H. Hara et al.” (KYO, photo); “Sinduwa, 27°04’N, 87°23’E, alt. 2400 m, 1 Aug 1973, J.F. Dobremez DBR NEP 1763” (E00670592), “l.c. 1750” (E00670593).

ILAM: “Near Ilam, Ilam, alt. 1500–2000 m, 5 Nov 1988, T. Nakaike 3671” (PE); “Mai Pokhari, 27°00’N, 87°57’E, alt. 2000 m, J.F. Dobremez DBR NEP 1227” (E00754786); “l.c. 1229” (E00670679, E00764780); “Partia Darjeling: Phalut 3600 m – Rathi Chu 2100 m – Ramam 2400 m, along path in dense forest, c. 2100 m, 4 Aug 1972, K. Kanai et al. 725717” (KYO, photo).

TAPLEJUNG: “Ghatte-Khebang, 19 Nov 1963, H. Hara, H. Kanai, S. Kurosawa, G. Murata, M. Togashi, T. Tuyama” (KYO, photo); “Shewaden (2600 m)—Mewa Khola (2100 m)—Papung (2000 m), along path in light shade, alt. c. 2200 m, H. Kanai et al. 725350–C” (KYO, photo); “Tapplejung, 27°21’N, 87°41’E, alt. 2000 m, 06 Oct 1971, J.F. Dobremez DBR NEP 1344” (E00670571, E00754795).

TEHRATHUM: “Dor 2600 m – Tute 2300 m, Jun 1972. H. Kanai et al. 754949” (KYO, photo); “Chittre, alt. 2200 m. 27°06’N, 87°25’E, 16 Aug 1972, J.F. Dobremez DBR NEP 1495” (E00670575), “l.c. 1507” (E00670576), “l.c. 1484” (E00670577).

SOLUKHUMBU: “Between Basa and Junbesi, Solukhumbu, alt. 2600–3500 m, 16 Oct 1988, T. Nakaike 3356” (PE 01593989); “Between Goem and Junbesi, Solukhumbu, alt. 3200–2650 m, 9 Oct 1988, T. Nakaike 3243” (PE 016344007); “De Namche Bazar en direction de la Dudh Khosi (Monjo), alt. 2900 m, 17 Oct 1954, A. Zimmermann 1735” (KYO, photo).

Selaginella ciliaris (Retz.) Spring
Figs 6(1A–C), 10E, 27

≡ Lycopodioides ciliaris (Retz.) Kuntze, Revis. Gen. Pl. 2: 826. 1891, as “ciliaris”.

Type. SRI LANKA. E. Ceylon, König s.n. (holotype LD [1119541]; isotype: K).
≡ Selaginella belangeri (Bory) Spring, Monogr. Lycop. 2: 242. no. 180. 1850.
≡ Selaginella exigua Spring, Monogr. Lycop. 2: 238. no. 175. 1850.
≡ Lycopodioides exigua (Spring) Kuntze, Revis. Gen. Pl. 2: 826. 1891. Type. MYANMAR. Peninsula indo-chinensi, Mergui, W. Griffith, 266 (H. Hooker) (holotype K [001067469]).

Description. Stems 2–5(–8) cm, short-creeping, fertile stem often erect. Rhizophores restricted to lower branches or to middle of main stem. Main stems branched from throughout, branches simple to compound from base of stem, 0.3–0.4 mm in diam. in lower part. Stems terete, sulcate or not sulcate, primary leafy branches 3 or 4 pairs, simple or forked or once pinnately branched. Axillary leaves ovate-obtuse or ovate, 1.2–2 × 0.7–1.1 mm, base exauriculate, margin ciliolate in basal half, upward denticulate, apex slightly acute. Ventral leaves ovate or ovate-lanceolate, 1.4–2 × 1.4–2 mm, in base obtuse, acroscopic base enlarged, broader, margin ciliolate, subentire or minutely denticulate to apex, apex acute. Dorsal leaves ovate, 1.1–1.6 × 0.5–1 mm, slightly carinate, base subcordate or obtuse, margin minutely denticulate, apex acuminate or aristate. Strobili solitary, terminal, compact, 4.5–13 × 2–4.5 mm. Sporophylls dimorphic, ventral sporophyll ovate-triangular, margin ciliolate; dorsal sporophyll ovate-oblong, minutely denticulate and ciliolate. Megaspores yellowish, surface fine reticulate; microspores orange, surface less obviously verrucate.

Ecology. On sandy and clay-slopes at the forest edge. Alt. 60–600 m.

Distribution in Nepal. W, C, E.
Nepalese threatened status: not available data.

General distribution. CHINA (Guangdong, Guangxi, Hainan, Taiwan, Yunnan), INDIA (Andaman and Nicobar Islands, Andhra Pradesh, Assam, Bihar, Chhattisgarh, Jharkhand, Karnataka, Kerala, Madhya Pradesh, Maharashtra, Manipur, Meghalaya, Odisha, Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttarakhand, Uttar Pradesh, West Bengal), MYANMAR, SRI LANKA, BANGLADESH; INDONESIA (Java), PHILIPPINES, THAILAND, VIETNAM, NEW GUINEA, AUSTRALIA.

Chromosome number. x=9; 2n=18 (Jermy et al. 1967).
Figure 6. Morphological diversity of the leaves of Nepalese Selaginella species 1A–C. S. ciliaris (s.n. 1225, PE) 2A–C. S. monospora (Tabata et al. 11051, PE) 3A–C. S. trichophylla (Lu & Zhang 27625–B, PE). A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.

Selected specimens examined:

Selaginella monospora Spring
Figs 6(2A–C), 10F, 28

≡ *Selaginella microclada* Baker, J. Bot. 22: 246. 1884. **Type.** INDIA. Sikkim, Chongtong, alt. 4000 ft. 22 Jul 1862. *Dr. Anderson 1404* (holotype: K [001067485]).

Description. Stems 35–85 cm, creeping. Rhizophores at intervals throughout length of main stem, borne on ventral side in axils of branches. Main stems branched throughout, pinnately branched. 1.5–2 mm in diam. in lower part. Axillary leaves ovate, narrowly ovate, or narrowly elliptic, 2–3 × 0.8–1.6 mm, base exauriculate, margin denticulate, apex acute. Ventral leaves ovate-triangular or oblong-falcate, 2.6–4.3 × 0.9–1.4 mm, basiscopic base decurrent, margin subentire or entire; acroscopic base enlarged, broader, overlapping stem and branches, margin denticulate, apex subacute. Dorsal leaves ovate-lanceolate or elliptic, 1–1.6 × 0.5–0.7 mm, carinate or strongly carinate, base obtuse, not peltate, margin denticulate, apex acuminate or shortly aristate. Strobili solitary, terminal, compact, 3–15 × 1.9–5 mm, sporophylls isomorphic, slightly dimorphic to strongly dimorphic. Sporophylls dimorphic, ventral sporophylls ovate-lanceolate, carinate, base dilated, margin denticulate; dorsal sporophylls lanceolate, sharply carinate, margin minutely denticulate, apex acuminate. Megaspores brown, surface verrucate; microspores orange, surface verrucate.

Ecology. On moss covered rocks or on damp slopes in forests, sparse in open slopes on edge of forest. Alt. 1650–3000 m.

Distribution in Nepal. C, E.

Nepalese threatened status: not available data.

General distribution. BHUTAN, CHINA (Guangdong, Guangxi, Guizhou, Hainan, Xizang, Yunnan), INDIA (Assam, Kerala, Manipur, Meghalaya, Tamil Nadu, Sikkim, West Bengal), MYANMAR, THAILAND, VIETNAM.

Chromosome number. Not available data.

Selected specimens examined:

E Nepal: SANKHUWASABHA: “en route from Harelo to Chichila, *Castanopsis hystrix* forest, on the moist rock. alt. 1935 m, 2 Jun 1978, *H. Tabata et al. 11051*”
A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Selaginella trichophylla K.H. Shing

Figs 6(3A–C), 10G, 29

= *Selaginella monospora* var. *ciliolata* W.M. Chu, Fl. Yunnan. 20: 719. 2006, syn. nov. **Type.** CHINA. Yunnan: Jingdong Xian, Ailao Shan, Xujiaba, alt. 2450 m., under evergreen broad-leaved forest, 22 Apr 1982, *J.J. He 13352* (holotype: PYU!; isotype: PE!).

Description. Plants 20–35 cm, creeping. Rhizophores at intervals throughout length of main stem, borne on ventral side in axils of branches. Main stems pinnately branched throughout, stramineous, 1.0–1.5 mm in diam., in lower part, stem oval or terete, not sulcate, primary leafy branches 8–12 pairs, once or twice pinnately branched, branches sparse or thick, adjacent primary branches on main stem 1.5–2.5 cm apart. Axillary leaves on branches symmetrical, ovate or ovate triangular, 1.2–3.1 × 0.7–2.3 mm, base exauriculate or slightly subcordate, margin ciliolate at base, apex acute. Dorsal leaves ovate, 1.1–2.6 × 0.6–1.2 mm, slightly carinate, base obtuse or oblique subcordate, not
peltate, margin ciliolate (more densely ciliolate at base), apex aristeate. Ventral leaves ovate-triangular, 1.5–3.6 × 0.9–2.1 mm, margin denticulate; basiscopic base in base with few cilia or entire, acroscopic base enlarged, broader, overlapping stem and branches, margin ciliolate, in upper part denticulate, apex acute. Strobili solitary, terminal, compact, dorsiventrally complanate, 4.0–6.5 × 1.2–2.6 mm, sporophylls dimorphic, resupinate, not white-margined; dorsal sporophylls ovate-lanceolate, carinate, margin denticulate, apex acuminate; ventral sporophylls ovate-lanceolate, carinate, margin denticulate. Megaspores whitish surface verrucate or papillate; microspores orange, surface verrucate.

Ecology. On moist cliffs, in evergreen broad-leaved forest. Alt. 1500–1600(2200) m.

Distribution in Nepal. C, E, rare, requiring additional research.

Nepalese threatened status: Data-deficient (DD) according to the IUCN (2001) criteria.

General distribution. BHUTAN (“Rukubi (2600) – Chendebi (2300) – Charikhachor (2250) – Neylong (2200), 14 Apr 1967, H. Hara, H. Kanai, G. Murata, H. Ohashi, O. Tanaka & T. Yamazaki 4105” (KYO); “Yuto La, between Bumthang and Trongsa, 8500 ft., Shady banks in deciduous forest. F. Ludlow, G. Sherriff, J.H. Hicks 17023” (KYO; L.4328981)), CHINA (Yunnan, Guangxi, Guizhou, Guandong, Hainan), INDIA (Sikkim (E Sikkim District. Above and S. of Penlang Bazaar, below and on way up to Namphung Peak of the T injure ridge, W. of Tashi View-Point, Across valley to the north of Gangtok. Just below crest on N. side of densely mixed-forest ridge. 29 Sep 1998. C.R. Fraser-Jenkins 27054 (FN 3031)” (L.4328985)), VIETNAM (Cao Bang).

Chromosome number. Not available data.

Selected specimens examined:

Note. We examined the type and general collections in herbaria PE, KUN and PYU for *S. trichophylla* and *S. monospora* var. *ciliolata*: the taxon described as *S. monospora* var. *ciliolata* W.M. Chu (in Chu 2006) and listed in the “Uncertain taxa” in Flora of China (Zhang et al. 2013: 66) has many similarities in morphological features with *S. trichophylla*. The only distinct feature is the spinules on the upper side of the leaves, but these are not always present and it is likely that this trait is associated with a more humid habitat.

Selaginella repanda (Desv. ex Poir.) Spring

Figs 7(1A–C), 10H, 30

Figure 7. Morphological diversity of the leaves of Nepalese Selaginella species 1A–C S. repanda (Nakaike 3708, PE) 2A–C S. vaginata (Nakaike 1102, PE) 3A–C S. chrysorrhizos (Nakaike 3708, PE). A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.

Type. PHILIPPINE. Isl. Manila. Chamisso s.n. (?).

Type. BURMA. Mts. of Ava, Wallich p. p. (?).

Type. INDIA. Rajemah Mts, of Hindustan. Dr. Wallich; Mongher, Dr. Hamilton; Hilly country of Madras. Dr. Wight = *S. radicata* (syntypes: E).

Type. INDIA. Parasnath, 200 ft., Bheerboom and Hills near Balasore (holotype C).

Type. MALAYSIA. Malacca, Griffith s.n. (?).

Description. Stems 5–30 cm, suberect to erect. Rhizophores borne from base to upper part of main stem or restricted to creeping rhizomes and stolons, on ventral side in axils of branches. Main stem branches above base, without branching part up to 15 cm, stems oval or terete. Axillary leaves more or less similar to lateral leaves, ovate or ovate-lanceolate, 2–3 × 1–1.4 mm, base exauriculate, margin ciliolate, in upper part subdentate, apex obtuse. Ventral leaves spreading, ovate, 2.2–3 × 1–1.5 mm, subfalcate, rounded at base, basiscopic base with few cilia, acroscopic base rounded, not overlapping stem and branches, margin ciliolate in basal half, in middle and upper part dentate to denticulate, apex acute. Dorsal leaves ovate, imbricate, base cordate, in base margin ciliolate, margin in middle and upper part denticulate, apex acute to acuminate. Strobili tetragonal, submonomorphic, 3–8 × 1.5–3 mm. Sporophylls uniform, submonomorphic or sometimes dorsal sporophylls longer, ovate, margin ciliolate, apex acuminate. Megaspores yellowish orange, baculate, surface regulate or reticulate; microspores orange, surface irregular elevations.

Ecology. In the open or semi-shaded places on rocks or under shrubs on soil banks. Alt. 200–400 m.

Distribution in Nepal. C, E.

Nepalese threatened status: VU (Fraser-Jenkins et al. 2015).

General distribution. CAMBODIA, CHINA (Guangxi, Guizhou, Hainan, Taiwan, Yunnan), INDIA (Andhra Pradesh, Assam State, Bihar, Chhattisgarh, Jharkhand, Karnataka, Madhya Pradesh, Meghalaya, Maharashtra, Mizoram, Nagaland, Odisha, Rajasthan, Sikkim, Tamil Nadu, Uttarakhand, Uttar Pradesh, West Bengal), INDONESIA, LAOS, MALAYSIA, MYANMAR, PHILLIPINES, THAILAND, VIETNAM.

Chromosome number. Not available data.

Selected specimens examined:

Selaginella vaginata Spring

Figs 7(2A–C), 10I, 31

≡ Lycopodioides vaginata (Spring) Kuntze, Rev. Gen. Pl. 1: 827. 1891. Type. (lectotype, designated by Fraser-Jenkins et al. 2017) INDIA. NE India, Meghalaya, Khasiya (Khasia) [cited by Spring as “Gorval” i.e. Garhwal, Uttarakhand, in error], W. Griffith (K). Also cited as syntypes were Bhutan, “Bootan, W. Griffith” (K); and South India, Tamil Nadu, “Nelligheries [Nilgiris], G.S. Perottet 642 (P [= S. radicata]).

= Selaginella thomsonii Hieron, Hedwigia 43: 38. 1904. Type. INDIA. India orientalis: habitat in montibus Khasia, alt. s.m. 4–6000 feet, regione temperate, J.D. Hooker et T. Thomson (holotype: K?; isotype: B [20 0176901]).

Description. Stems 3.5–10 cm, creeping, fertile stems erect. Rhizophores restricted at intervals throughout length of creeping stem and branches and to lower part of erect fertile branches, borne on ventral side in axils of branches. Main stems branched throughout, 0.2–0.4 mm in diam. in lower part. Stem stramineous, terete, sulcate or not, branches few; erect fertile stems pinnately branched throughout. Axillary leaves ovate-triangular, 1.2–2.5 × 0.5–1.5 mm, base exauriculate, margin ciliolate in basal part, subentire in middle and upper part. Ventral leaves ovate-lanceolate or oblong-falcate, 1.6–3.2 × 0.8–1.5 mm, basiscopic base rounded, margin denticulate in basal half, denticulate upward; acroscopic base endlagned, broadly overlapping stem and branches, margin ciliolate, sparsely long ciliolate at base, apex acute. Dorsal leaves ovate-lanceolate, 0.8–2.3 × 0.4–1.1 mm, imbricate, base subcordate, cuneate, or obtuse, not peltate, margin long ciliolate at base, shortly ciliolate (rarely long ciliolate) upward, apex acuminate or aristate. Strobili solitary or in pairs, terminal, 10–15(–40) × 2–3.5 mm. Sporophylls dimorphic or slightly dimorphic, dorsal sporophylls ovate-lanceolate, margin ciliolate or denticulate, apex acuminate; ventral sporophylls ovate-lanceolate, margin denticulate or ciliolate, apex acuminate. Megaspores yellowish, surface verrucate; microspores orange, surface verrucate and rugate.

Ecology. Terrestrial or epilithic, forming a carpet on vertical banks and rocks evergreen or seasonally green. Alt. 500–2900 m.

Distribution in Nepal. W, C, E.

Nepalene threatened status: not available data.

General distribution. BANGLADESH, BHUTAN, CAMBODIA, CHINA (Beijing, Chongqing, S Gansu, Guangxi, Guizhou, Henan, Shaanxi, Sichuan, Xizang, Yunnan), INDIA (Assam State, Chhattisgarh, Himachal Pradesh, Jammu and Kashmir, Jharkhand, Madhya Pradesh, Manipur, Meghalaya, Nagaland, Odisha, Sikkim, Tripura, Uttarakhhand, West Benga), LAOS, MYANMAR, PAKISTAN, THAILAND, VIETNAM.
Chromosome number. Not available data.

Selected specimens examined:

PALPA/SYANGJA: “Angahora, between Butwal and Pokhara, alt. c. 650 m, 9 Nov 1988, *T. Nakaike 3732*” (PE); “Bategora, between Butwal and Pokhara, alt. c. 700 m, 9 Nov 1988, *T. Nakaike 3736*” (PE).

KATHMANDU: “near Tribhuvan Airport, alt. c. 1300 m, 15 Sep 1986, *T. Nakaike 1506*” (PE); “Nagarjun, alt. c. 1400 m, 26 Aug 1986, *T. Nakaike 1102*” (PE); “Swayambhunath, alt. c. 1400 m, 7 Oct 1986, *T. Nakaike 2429*” (PE).

SANKHUWASABHA: “Papung-Bir Gaon, along path in light shade, alt. 1600–2000 m, 30 Jun 1972, *H. Kanai et al. 7253393*” (TI); “Papung (2000 m)—Bir Gaon (1600 m)—Sangrati Pati (1050 m), alt. 1300 m, 26 Aug 1977, *H. Ohashi et al. 772767*” (TI, photo); “Papung 2000 m-Bir Gaon 1600 m, 30 Jun 1972, *H. Kanai et al. 725393 [873274]*” (KYO, photo).

BHOJPUR: “Birgaon 1600 m-Suju Khola 1400 m-Dingla 1000 m, 1 Jul 1972, *H. Kanai et al. 725426*” (KYO, photo); “Dingla 1000 m-Doban 800 m, on muddy rock along path in shade, 2 Jul 1972, *H. Kanai et al. 725456*” (KYO, photo); “Birgaon-Dingla, alt. 1600–1000 m, 01 Jul 1972, *K. Ohashi et al. 725426*” (E00670675).

DHANKUTA: “Teku Nala 800 m-Tamur Bridge 300 m, 9 Jul 1972, *H. Kanai et al. 725511*” (KYO, photo); “Dhankuta, 26°50′N, 87°20′E, alt. 400 m, 11 Oct 1971, *J.F. Dobremez DBR NEP 1370*” (E00670683).

SUNSARI: “Dharan, 26°49′N, 87°18′E, alt. 600 m, 13 Aug 1972, *J.F. Dobremez DBR NEP 1442*” (E00670587).
Selaginella chrysorrhizos Spring
Figs 7(3A–C), 11A, 32

Type. (lectotype, designated by Fraser-Jenkins et al. 2017) Assam, Griffith 141 (K).

Description. Stems 8–12 cm, evergreen or seasonally green, suberect. Rhizophores restricted to base of stem. Main stems branched from near base or from lower part upward, in basal part main stem 0.5–1.1 mm in diam. Stems glabrous, glossy yellow, sulcate, primary leafy branches 5–8 pairs, forked or once or twice pinnately branched. Axillary leaves ovate-oblong, 1.0–2.0 × 0.5–0.8 in base slightly cuneate, margin denticulate, apex obtuse. Ventral leaves ovate-oblong, 0.6–0.8 × 1–2 mm, ascending, acroscopic base ovate-oblong, slightly dilated, imbricate, distantly rotundate at the base, margin denticulate, basiscopic base, entire, except apices, apex obtuse. Dorsal leaves ovate, 1.8–2 × 0.5–0.8 mm, subfalcate, margin denticulate, apex shortly cuspidate. Strobili solitary, terminal, compact, 3–7 × 1.5–2 mm. Sporophylls dimorphic, ventral sporophylls ovate, aristate, margin ciliate; dorsal sporophylls oblong, obtuse, margin ciliate-dentate. Megaspores dark-brown, surface verrucate; microspores pale-brown, surface verrucate.

Ecology. On banks and on large stones. Alt. 200–2000 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: not available data.

General distribution. BANGLADESH, BHUTAN, INDIA (Assam, Kerala, Madhya Pradesh, Manipur, Meghalaya, Mizoram, Sikkim, West Bengal), LAOS, MYANMAR, THAILAND, VIETNAM.

Chromosome number. Not available data.

Selected specimens examined:

MAKAWANPUR: “Pisulin [Fishling], near Muglin, Gorkha [Makawanpur District], alt. c. 300 m, 12 Nov 1988, T. Nakaike 3831” (PE).

SANKHUWASABHA: Simbu, 27°22’N, 87°47’E, alt. 1800 m, 5 Dec 1971, J.F. Dobremez DBR NEP 1335” (E00754784); “Sunaturi, W. of Hetauda, Makawanpur, alt. c. 200 m, 8 Nov 1988, T. Nakaike 3702” (PE); “l.c. 3698” (PE); “l.c. 3720” (PE); “l.c. 3706” (PE); “Simbu, 27°22’N, 87°47’E, alt. 2000 m, 5 Dec 1971, J.F. Dobremez DBR NEP 1333” (E00670601, E00754800); “Simbu, 27°22’N, 87°47’E, alt. 1800 m, 5 Oct 1971, J.F. Dobremez DBR NEP 1335” (E00670602).
Selaginella reticulata (Hook. & Grev.) Spring
Figs 8(1A–C), 11B, 33

≡ Lycopodium reticulatum Hook. & Grev., Bot. Misc. 2: 402. 1831. Type. MYANMAR. Mt. Ava. Dr. Wallich s.n. (holotype: K [001067446]).
= S. nudicaulis Spring, Monogr. Lyc. II: 235. 1850.

Description. Stems 6–15 cm, erect or suberect. Rhizophores in basal part or one-third creeping stem and branches, on ventral side in axils of stem branches. Main stems, much branched, slender, primary branches on intervals, 0.8–1.2 mm in diam. in lower part, second branches simple or forked. Axillary leaves, ovate, 0.9–1.3 × 0.5–0.8 mm, base rotundate, margin dentate, apex subacute. Ventral leaves ovate, 1.7–2 × 0.7–1 mm, base rotundate, basiscopic base slightly denticulate, acroscopic base rounded, not overlapping stem and branches, margin denticulate, apex subobtuse to subacute. Dorsal leaves ovate, 0.7–1 × 0.3–0.5 mm, oblique, margin thickened, distantly serrulate, apex acute to very slightly acuminate. Strobili solitary, terminal, compact, 4–7 × 1.5–3 mm. Sporophylls dimorphic, dorsal sporophylls ovate-oblong, margin ciliolate, apex acuminate; ventral sporophylls ovate, sub-pellucid, margin ciliolate, apex shortly acute. Megaspore yellow or dark-brown, surface granulose; microspores orange, surface smooth granulose.

Ecology. Growing in groups on moist shaded rocks and banks at the bases of hills. Alt. 1100–3700 m.

Distribution in Nepal. W, C, E.
Nepalese threatened status: not available data.

General distribution. BANGLADESH, BHUTAN, INDIA (Assam State, Chhatisgarh, Jammu and Kashmir, Kerala, Madhya Pradesh, Meghalaya, Odisha, Rajasthan, Sikkim, Tamil Nadu, Uttarakhand, West Bengal), MYANMAR.

Figure 8. Morphological diversity of the leaves of Nepalese *Selaginella* species 1A–C *S. reticulata* (Nakaike 1760, PE) 2A–C *S. subdiaphana* (Zhang 5, PE) 3A–C *S. tenuifolia* (PE-Xizang Exped. PE6280, PE). A – Axillary leaves, B – Dorsal leaves, C – Ventral leaves. Scale bars: 0.2 mm.
Chromosome number. Not available data.

Selected specimens examined:

Selaginella subdiaphana (Wall. ex Hook. & Grev.) Spring

Figs 8(2A–C), 11C, 34

– Lycopodium subdiaphanum Wall. nom. nud. Type. INDIA. Montains of Sylhet and Kamoon. Dr. Wallich n. 136 (syntypes: K; B [20 0147161–A]).

= Selaginella aggesta Spring, Monogr. Lyc. II: 89, no. 31. 1850. Type. INDIA. Gorval, Griffith (holotype: K [001067489]).

Description. Stems 10–35 cm, creeping or suberect. Rhizophores restricted to lower one-third part of main stems, 0.8–2.1 mm in diam. in lower part. Stem slender, sulcate. Axillary leaves ovate, 1.5–2.8 × 0.5–1.8 mm, in basal part cordate, margin in basal part ciliolate, in middle and upper dentate to denticulate, apex acuminate. Ventral leaves ovate to ovate-lanceolate, 1.7–3.2 × 0.8–1.7 mm, in base slightly auriculate, basiscopic base entire, acroscopic base endlanged, broadly overlapping stem and branches, margin ciliate-dentate at base, entire towards apex, apex subobtuse. Dorsal leaves ovate, 1.2–1.6 × 0.5–0.7 mm base obtuse or slightly subcordate, margin ciliolate to denticulate, apex acute to short acuminate. Strobili solitary, terminal, compact, 4.0–8.2 × 2.0–4.0 mm. Sporophylls dimorphic, dorsal sporophylls ovate, margin den-
A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

ticulate, sub-acute; ventral sporophylls ovate, margin ciliolate, apex acute. Megaspores bright red, surface warty; microspore slightly-orangy red, surface warty.

Ecology. On damp sheltered earth banks. Alt. 350–2500 m.

Distribution in Nepal. W, C, E.

Nepalese threatened status: not available data.

General distribution. BHUTAN, CHINA (Yunnan, Xizang (Naramu County)), INDIA (Assam State, Himachal Pradesh, Jammu and Kashmir, Manipur, Meghalaya, Nagaland, ?Odisha, Punjab, Sikkim, Uttarakhand, West Bengal).

Chromosome number. 2n=16 (Loyal 1976; Loyal and Kumar 1984).

Selected specimens examined:

W Nepal: DANG: “Between Kurpani and Ghorai, alt. 4000 ft, 4 Sep 1952, O. Polunin, W.R. Sykes & L.H.J. Williams 1331” (KYO, photo).

C Nepal: RASUWA: “Langtang: between Ramche and Betrawati, 800–1800 m, 9 Sep 1986, T. Nakaike 1427” (PE).

KASKI: “en route from Huenda to Naudanda, alt. 1100–1300 m, 21 Sep 1976, Y. Suehiro 190” (KYO, photo); “l.c. Y. Suehiro 184(II-1)” (PE); “Chomrong, alt. 2200 m, 26 Sep 1976, Y. Suehiro 2298 (Q4-I)” (KYO, photo).

SYANGJA: “en route from Hyenda to Naudanda, alt. 1100–1300 m, 21 Sep 1976, Y. Suehiro 204” (TI, photo).

KATHMANDU: “Gokarna Ban, Kathmandu, alt. 1350 m, 29 Oct 1988, T. Nakaike 3559” (PE); “l.c. 3551” (PE); “Kathmandu, alt. 1350 m, 3 Sep 1954, A. Zimmermann 1005” (KYO, photo).

MAKAWANPUR: “Balephi Khola, 27°50’N, 85°46’E, alt. 1000 m, 22 Aug 1971, J.F. Dobremez DBR NEP 829” (E00670681).

NUWAKOT: “Berdawati [Betrawati], alt. 850 m, 15 Sep 1972, A. Maire AMA 450” (E00670578);

E Nepal: TAPLEJUNG: “Shewaden (2600 m)–Mewa Khola (2100 m)–Papung (2000 m), alt. c. 2400 m, 29 Jun 1972, H. Kanai et al. 725350B [873274]” (KYO, photo).

SANKHUWASABHA: “Telok, 27°22’N, 87°50’E, alt. 1200 m, J.F. Dobremez DBR NEP 1323”(E00754785); “Sankhuwasabha Distr.: Khandbari (1150 m)–Mani Bhanjyang (1150 m)–Sekaha (1450 m)–Botebus (1800 m), 27 Jul 1977, H. Ohashi et al. 771545” (TI, photo).

DHANKUTA: “Dhankuta, 26°50’N, 87°20’E, alt. 400 m, 11 Oct 1971, J.F. Dobremez DBR NEP 1371” (E00670582, E00670586); “Chititre, 27°06’N, 87°25’E, alt. 2200 m, J.F. Dobremez DBR NEP 1483”(E00668256).

SUNSARI: “Dharan-Sanguri Bhanjyang, alt. 1300 m, 2 Jun 1972, H. Kanai et al. 725032” (E00670676); “Dharan, 26°49’N, 87°18’E, alt. 800 m, 04 Sep 1971, J.F. Dobremez DBR NEP 1779” (E00670604); “Dharan 400 m-Sanguri Bhanjyang 1300 m, 2 Jun 1972, H. Kanai et al. 725032 [872266]” (KYO, photo).

MORANG: “Chisapini, alt. 500 m, 26°50’N, 87°55’E, J.F. Dobremez DBR NEP 1170”(E00670677 & E00754782).
Selaginella tenuifolia Spring
Figs 8(3A–C), 11D, 35

= Selaginella aureola Spring, Mém. Acad. Sci. Brux. 24: 244. no. 182. 1850; Alston 1945. **Type.** (lectotype, designated by Fraser-Jenkins et al. 2015) INDIA. Churra-Punjee, Khasya, [W.] *Griffith* (182), [in 1835], Herbarium Hookerianum 1867 (K).

Description. Stems 10–20 cm, erect. Rhizophores restricted to lower one-third part of main stems, very slender, long, 0.9–1.3 mm in diam. in lower part, lateral branches forked a few times. Stem slender, glabrous, stramineous, pinnately branched. Axillary leaves ovate or slightly ovate-lanceolate, 2.5–3.5 × 1.5–2.0 mm, margin denticulate in basal part, apex acute. Ventral leaves ovate, 3.5–4.5 × 2.0–2.8 mm oblique, in base cordate, acroscopic base endlangered, broadly overlapping stem and branches, margin denticate, basiscopic base rounded, margin entire, apex sub-obtuse. Dorsal leaves ovate, 1.4–2.0 × 1.0–1.5 mm, oblique, in base subrounded, margin minutely dentate, apex aristate. Strobili solitary, terminal, compact, 4–8 × 1–2.5 mm. Sporophylls dimorphic, dorsal sporophylls ovate-oblong, spreading, in basal part slightly longer than apical, margin denticulate; ventral sporophylls ovate, with round base, margin denticulate, apex aristate. Megaspores brownish, surface verrucate; microspores yellowish-brown, surface irregularly verrucate.

Ecology. Terrestrial or epilithic, seasonally green, scattered in moist shady places or clayey soils in forest. Alt. 700–2200 m.

Distribution in Nepal. C, E.
Nepalese threatened status: NT (Fraser-Jenkins et al. 2015).

General distribution. CHINA (Xizang), INDIA (Assam State, Meghalaya, Sikkim, West Bengal), MYANMAR, THAILAND.

Chromosome number. Not available data.

Selected specimens examined:

MAKAWANPUR: “above Liot village, Basmari, c. 5 km W of Hetauda, off Narayanghat road. Densely sal-forested and rocky stream-gully on slope of first range of foothills beyond (N of) the Churiya Ghatas. On rocks in forest, 24 Sep 1997, *C.R. Fraser-Jenkins et al. 25756 (FN 1734)*” (US, photo).

Figure 9. Diversity strobili of Nepalese Selaginella species A. S. indica (Nakaike 1325, PE) B. S. bryopteris (Tabata et al. 11989, PE) C. S. fulcrata (Nakaike 1923, PE) D. S. involvens (Zhang 345, PE) E. S. pallida (Nakaike 3740, PE) F. S. remotifolia (Nakaike 3522, PE) G. S. semicordata (Jenkins s.n., PE) H. S. helvetica (Zhang 0638, PE) I. S. pallidissima (Zhang 2746, PE). Scale bars: 1 mm (A–G), 2 mm (F, H–I).

Note. As reported by Fraser-Jenkins et al. (2015), S. tenuifolia is a rather uncommon low to mid altitude species, and widespread from Himalaya to Thailand. In our study (data not published) two collections were included, one from Nepal (T. Na-
Figure 10. Diversity strobili of Nepalese Selaginella species A S. laxistrobila (Nakaike 1319, PE) B S. bisulcata (Nakaike 3786, PE) C S. pennata (Nakaike 3507, PE) D S. chrysocaulos (Nakaike 1058, PE) E S. ciliaris (s.n. 1225, PE) F S. monospora (Tabata et al. 11051, PE) G S. trichophylla (Lu & Zhang 27625-B, PE) H S. repanda (Nakaike 3708, PE) I S. vaginata (Nakaike 1102, PE). Scale bars: 2 mm (A, B), 2 mm (C, D, G, H), 1 mm (E, F, I).
Figure 11. Diversity strobili of Nepalese Selaginella species A S. chrysorrhizos (Nakaike 3708, PE) B S. reticulata (Nakaike 1760, PE) C S. subdiaphana (Zhang 5, PE) D S. tenuifolia (PE-Xizang Expedition PE6280, PE). Scale bars: 1 mm (A, D), 2 mm (B, C).

Examined samples were studied on three grounds: gross morphology, morphology of spores and molecular data. Results of gross morphology did not show big differentiation in morphology features for examined samples (incl. observation of ventral and dorsal leaves, shape of leaf margin, strobili, ventral and dorsal sporophylls. Ventral leaves broadly overlapping stem and branches, margin denticulate; Dorsal leaves: ovate, at apex aristate, margin denticulate. Strobili oval in shape; ventral and dorsal sporophylls at margin denticulate.

In both examined collections megaspores on the proximal and distal surfaces are covered with irregularly sized verrucae, the main surface is vermiculate, micro-sculptures are dense spinulose. Microspores on the proximal and distal surfaces are covered with irregularly sized verrucae, micro-sculptures are echinulate.

The molecular data also support the results of morphological studies.

As a result, we consider the distribution of the species not only at low and medium altitudes but also in the highlands.
Figure 12. Selaginella indica R.M. Tryon. A Habit B lateral branches with compact tetragonal strobilus C lateral branches with spirally arranged monomorphic leaves (Cooper 4866, E).
A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Figure 13. *Selaginella pulvinata* (Hook. & Grev.) Maxim. **A** Habit **B** fragment of the upper surface of the lateral branch showing dorsal leaves imbricate at branch (A Maire AMA 894, E; B Tábata et al. 3520, PE). Link: (http://data.rbge.org.uk/herb/E00670565).
Figure 14. Selaginella bryopteris (L.) Baker. A Habit, upper surface B fragment of the lateral branches showing imbricate ventral leaves C fragment of the upper surface of the lateral branch showing dorsal leaves imbricate at branch (J.F. Dobremez DBR NEP 1373, E). Link: (http://data.rbge.org.uk/herb/E00670572).
Figure 15. *Selaginella adunca* A. Braun ex Hieron. **A** Habit **B, C** fragment of the upper surface of the lateral branches showing imbricate at branch apices (**A**) and medial part lateral branches (**B**). **D** fragment of the main stem showing shape of leaves (*J.F. Dobremez* DBR NEP 2689, E). Link: (http://data.rbge.org.uk/herb/E00670605).
Figure 17. *Selaginella involvens* (Sw.) Spring. **A** Habit, upper surface of stem **B** habit, lower surface of stem **C** lower surface of the main stem **D** upper surface of the main stem **E** lower surface of the lateral branches **F** upper surface of the lateral branches (*J.F. Dobremez* DBR NEP 1315, E). Link: (http://data.rbge.org.uk/herb/E00668259).
Figure 18. *Selaginella pallida* Spring. **A (A1)** Habit, lower surface **B** habit, upper surface **C** strobilus, lower surface **D** fragment of the upper surface of the lateral branches **E** fragment of the lower surface of the lateral branches (*T. Nakaike 1438, PE*).
Figure 20. Selaginella semicordata (Wall. ex Hook. & Grev.) Spring. A Habit, lower surface B strobilus, lower surface C fragment of the lower surface of the lateral branches (Wallich n. 126.c, E). Link: (http://data.rbge.org.uk/herb/E00754776).
Figure 21. *Selaginella helvetica* (L.) Spring. **A** (A1) Habit, upper surface **B** fragment of the upper part strobilus **C** fragment of the lower surface of stem **D** fragment of the upper surface of stem (X.C. Zhang 0638, PE).
Figure 22. *Selaginella pallidissima* Spring. **A** Habit **B** strobilus, lower surface **C** fragment of the upper surface of the lateral branches **D** fragment of the lower surface of the lateral branches (*X.C. Zhang 2746, PE*).
Figure 23. *Selaginella laxistrobila* K.H. Shing. A Habit B Upper surface of strobilus C Lower surface of branches D Upper surface of branches (*T. Nakaike 1319, PE*).
Figure 24. Selaginella bisulcata Spring. A Habit, lower surface B habit, upper surface C strobilus, lower surface D fragment of the upper surface of the lateral branches E fragment of the lower surface of the lateral branches (J.F. Dobremez DBR NEP 1233, E). Link: (http://data.rbge.org.uk/herb/E00670678).
Figure 25. Selaginella pennata (D. Don) Spring. A Habit, lower surface B strobilus, lower surface C fragment of the lower surface of the lateral branches (J.F. Dobremez DBR NEP 1169, E). Link: (http://data.rbge.org.uk/herb/E00670671).
A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Figure 27. *Selaginella ciliaris* (Retz.) Spring **A** (A1) Habit, lower surface **B** Strobilus, lower surface **C** Fragment of the lower surface of the main stem **D** Fragment of the upper surface of the main stem (X.C. Zhang & A. Shalimov 9274, PE).
Figure 28. *Selaginella monospora* Spring. **A** Habit, upper surface, **B** (*B1*) Habit, lower surface **C** strobilus, upper surface **D** Fragment of the upper surface of the lateral branches **E** fragment of the lower surface of the lateral branches (*F. Henderson 13644*, E). Link: (http://data.rbge.org.uk/herb/E00754773).
A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Figure 29. *Selaginella trichophylla* K. H. Shing. **A** Habit **B** strobilus, lower surface **C** fragment of the upper surface of the lateral branches **D** fragment of the lower surface of the lateral branches (*Qinghai-Xizang Exped. 9451*, holotype: PE).
Figure 30. Selaginella repanda (Desv. ex Poir.) Spring. A Habit, lower surface B strobilus, lower surface C fragment of the upper surface of the lateral branches D fragment of the lower surface of the lateral branches (T. Nakaike 3715, PE).
Figure 31. *Selaginella vaginata* Spring. **A** Habit. **B** strobilus, lower surface. **C** fragment of the upper surface of the lateral branches. **D** fragment of the lower surface of the lateral branches (*T. Nakaike 1102, PE*).
Figure 32. Selaginella chrysoorrhizos Spring. **A (A1)** Habit, lower surface **B** habit, upper surface **C** strobilus, lower surface **D** fragment of the upper surface of the lateral branches **E** fragment of the lower surface of the lateral branches Spring (T. Nakaike 3723, PE).
Figure 33. *Selaginella reticulata* (Hook. & Grev.) Spring. **A (A1)** Habit, lower surface **B** strobilus, lower surface **C** fragment of the lower surface of the lateral branches **D** fragment of the upper surface of the lateral branches (*T. Nakaike 1760*, PE).
Figure 34. *Selaginella subdiaaphana* (Wall. ex Hook. & Grev.) Spring. **A** (**A1**) Habit, upper surface **B** (**B1, B2**) habit, lower surface **C** fragment of the upper surface of the lateral branches **D** fragment of the lower surface of the lateral branches **E** strobilus, lower surface (*J.F. Dobremez DBR NEP 829, E*). Link: (http://data.rbge.org.uk/herb/E00670681).
Figure 35. Selaginella tenuifolia Spring. A (A1, A2) Habit, upper surface (J.H. Lance s.n., E) B strobilus, lower surface C fragment of the upper surface of the lateral branches (A(A1, A2) J.H. Lace s.n., E; B, C PE-Xizang Expedition PE 6280, PE) Link: (http://data.rbge.org.uk/herb/E00800185).
Acknowledgements

We are grateful to the herbarium curators, and collection managers who helped us in our study. Special thanks to the curators of the herbarium of BM, E and P for sending on loan the specimens. Special thanks to Dr. T. Nakaike for sending duplicates of Selaginella he collected from Yunnan, Nepal and Pakistan to PE, and Mr. C.R. Fraser-Jenkins for providing many herbarium photographs and valuable suggestions to improve the distribution and literature citation of this manuscript. The authors are grateful to Prof. S.P. Khullar and Prof. S.C. Verma for their help in preparing this manuscript. This study was supported by the National Natural Science Foundation of China (NSFC, No. 31670205 and No. 31770237). The first author is grateful for funds received from “CAS-TWAS President’s Fellowship for International Ph.D. Students”.

References

A Taxonomic revision of the genus *Selaginella* (Selaginellaceae) from Nepal

Vascular plants dataset of the herbarium (COFC) of the University of Cordoba, Spain

Gloria Martínez-Sagarra¹, Juan Antonio Devesa¹

¹ Department of Botany, Ecology and Plant Physiology, University of Cordoba, Rabanales Campus, 14071, Cordoba, Spain

Corresponding author: Gloria Martínez-Sagarra (bv2masag@uco.es)

Abstract
This paper describes the herbarium (COFC) dataset of vascular plants of the University of Cordoba (SW Spain). This dataset is made up of two collections, the General collection (61,377 specimens) and the Historical collection (1,614 specimens). This study has focused mainly on the General collection, which contains the largest number of vascular plant specimens, predominantly angiosperms, mainly provincial and regional (Andalusia, Spain), but also with a good representation of other areas of the Iberian Peninsula and neighboring countries. The place of collection is specified in 99.7% of the labels, about 35% being georeferenced, and it is estimated that, currently, about 86% of the material housed in the herbarium has been databased using Elysia v1.0. software. With more than 178 families, 1,178 genera, and 3,750 species, this collection not only has educational importance, but is a valuable research tool that has been useful for the development of important works such as "Flora Vascular de Andalucía Occidental" and the "Flora iberica". The dataset described in this paper is registered with GBIF (accessible at https://doi.org/10.15468/fdzzal).

Keywords
Western Andalusia, Cordoba, COFC, herbarium collection, "Flora iberica", Spain, taxonomy, University of Cordoba, vascular plants
Context of the COFC herbarium

The herbarium (COFC) of the University of Cordoba (Spain) is located in the Rabanales Campus, on the outskirts of the city of Cordoba. It was created in 1977 and is associated with the Department of Botany, Ecology and Plant Physiology (Botany Section, Faculty of Sciences). The herbarium, of which Prof. J.A. Devesa is currently the curator, is registered in the Index Herbariorum with the acronym COFC (Thiers 2019, http://sweetgum.nybg.org/science/ih/). It includes three botanical collections: one of fungi (Fungi-COFC, 4,827 specimens) and two of vascular plants, the Historical collection (1,614 specimens) and the General collection (61,377 specimens), the latter being the most significant. To these will be added in the future the recently created collections of bryophytes and algae, in the initial phase and barely significant. So far, 98.7% of the specimens have been databased and they can be accessed through the GBIF network (http://data.gbif.org). Some interesting data from the Historical collection are provided, but the dataset described in this paper covers exclusively the General collection.

Historical collection

The Historical collection, created by the multifaceted man of religion José de Jesús Muñoz Capilla (who lived 1771–1840), contains a total of 1,614 specimens of vascular plants arranged in 22 classes according to the Linnaean system (Infante et al. 2002). Most of the specimens were collected during the years 1792–1834, mainly in the province of Cordoba, including some from plants cultivated in gardens, but occasionally in other provinces (e.g., Seville, Jaen, Cadiz, and Madrid), by the following botanists from Cordoba: Jesús Muñoz Capilla, Rafael Mariano León y Gálvez (1772–1811), Rafael Entrena y Camacho (1786–1835), and the Cádiz-born Antonio Nicolás Cabrera y Corro (1762–1827). This collection was ceded by the relatives of Muñoz Capilla in the mid-nineteenth century to the Special School of Veterinary Medicine (González Soriano 1923), an institution that more recently would become the Veterinary Faculty and the germ of the current University of Cordoba. The herbarium was restored and carefully inventoried by Jordano and Ocaña (1955, 1957), and in the 1970s, after the creation of the University of Cordoba, it was ceded to the facilities of the COFC herbarium. The collection houses some 900 species; only 17% of the labels provide some information about the place of collection, which in many cases is limited to the province, and for only about 5% is the year of collection stated. Its importance lies in its historical and cultural value, since it also contains plants collected by and/or annotations of important botanists with whom it maintained contact (Laza Palacios 1944), among them Mariano Lagasca (1776–1839), Félix Haenseler (1767–1841) and Edmond Boissier (1810–1885). The data in this collection can be consulted at https://doi.org/10.15468/f3tcb6.
General collection

The General collection has a total of 61,377 specimens that have been recorded with different herbarium number, and there are more than 12,000 duplicate specimens of the gatherings. This collection is the fourth largest among the Andalusian collections in terms of the number of specimens (based on the information obtained from the National Biodiversity Information Node 2015), after SEV, COA and MGC (Table 1). It contains material collected for the most part over the last 40 years from explorations and studies carried out by researchers from the Department of Botany, Ecology and Plant Physiology, undergraduate and post-graduate studies related to teaching and, in minor measure, exchanges with or donations by other herbaria. The collection comprises a wide representation of vascular plants – especially angiosperms– from the province of Cordoba and, to a lesser extent, from other Spanish regions, as well as a modest representation from bordering countries and other parts of the world. It mainly includes wild plants, with a minimum representation of ornamental plants (around 950 specimens). In recent years the collection has been enhanced, mainly by a large number of collections made in the Iberian Peninsula for taxonomic revision of various genera, especially *Centaurea* L. (Asteraceae) and *Festuca* L. (Poaceae), within the "Flora ibérica" project. This is one of the Spanish herbaria with greater representation of these genera. The herbarium, therefore, includes an important sample of the vascular plant biodiversity of the Iberian Peninsula, especially that of Western Andalusia (SW Spain), so it is not only essential for the knowledge and study of local flora, but also has been

<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Collection</th>
<th>Institution</th>
<th>Estimated number of specimens (year of estimate)*</th>
<th>Number of records published in GBIF (accessed 2019)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEV</td>
<td>Herbarium of the University of Seville</td>
<td>University of Seville</td>
<td>350,000 (2007)</td>
<td>226,498</td>
</tr>
<tr>
<td>COA</td>
<td>COA Herbarium</td>
<td>Botanical Garden of Cordoba</td>
<td>80,000 (2008)</td>
<td>39,835</td>
</tr>
<tr>
<td>MGC</td>
<td>MGC-Cormo Herbarium</td>
<td>Department of Plant Biology, Faculty of Sciences</td>
<td>74,683 (2012)</td>
<td>78,930</td>
</tr>
<tr>
<td>COFC</td>
<td>COFC Herbarium of the University of Cordoba: General collection</td>
<td>Department of Botany, Ecology and Plant Physiology, Faculty of Sciences</td>
<td>72,000 (2019)</td>
<td>60,566</td>
</tr>
<tr>
<td>GDA</td>
<td>Collection of vascular plants of the herbarium of the University of Granada</td>
<td>University of Granada</td>
<td>1,442 (2011)</td>
<td>55,219</td>
</tr>
<tr>
<td>HUAL</td>
<td>Herbarium of the University of Almeria</td>
<td>University of Almeria. Department of Plant Biology and Ecology</td>
<td>24,304 (2012)</td>
<td>14,971</td>
</tr>
<tr>
<td>JAEN</td>
<td>Herbarium of vascular plants</td>
<td>University of Jaen. Faculty of Experimental Sciences</td>
<td>34,000 (2012)</td>
<td>No data</td>
</tr>
<tr>
<td>UPOS</td>
<td>Herbarium of the University Pablo de Olavide</td>
<td>University of Pablo de Olavide</td>
<td>10,000 (2008)</td>
<td>No data</td>
</tr>
</tbody>
</table>

1 Estimation of sheets of unmounted and unfiled specimens; 2 It including the GDAC herbarium.

very useful for "Flora de Andalucía Occidental" (Valdés et al. 1987) and, currently, the "Flora iberica" (Castroviejo 1986–2019, http://www.floraiberica.org/).

This collection regularly increases, by about 1,250 specimens per year, and the dataset is periodically uploaded to the GBIF portals. The data referring to this collection can be found at https://doi.org/10.15468/fdzzal (entries through 2018−12−31), except for the data related to the genus Festuca, which have not been uploaded yet since they are still under study.

Taxonomic coverage

The collection of vascular plants has 61,377 specimens belonging to 178 families, 1,178 genera, and 3,750 species. Of the specimens in the collection, 97.8% are identified at the species level and the remaining 2.2% (about 1,350 specimens) only at the level of the genus, awaiting their review by a specialist.

The majority of the specimens in the collection are angiosperms (Angiospermae) belonging to the classes Magnoliopsida (49,140 specimens; 80.06%) and Liliopsida (10,893 specimens; 17.75%). These are followed, in terms of representation, by ferns and related groups, with 991 specimens (1.61%) and the following distribution: class Polypodiopsida (740 specimens), Equisetopsida (139 specimens), Lycopodiopsida (107 specimens), and Psilotopsida (5 specimens). Finally, for gymnosperms (Gymnospermae) there are 353 specimens (0.58%), with the following distribution: Cycadopsida (2 specimens), Ginkgoopsida (1 specimen), Gnetopsida (51 specimens), and Pinopsida (299 specimens). In

![Figure 1. Taxonomic coverage of the General collection dataset in terms of specimens (A). Number of species (brown), genera (yellow), and families (light blue) within each class (B).](image)
terms of diversity, Magnoliopsida (124 families, 886 genera, and 2,966 species), Pinopsida (4 families, 15 genera, and 34 species), and Polypodiopsida (15 families, 31 genera, and 62 species) are the most diverse classes within each large group of vascular plants (Fig. 1).

The ten families that contribute most, in percentage terms, to the plant specimens conserved in the herbarium are: Asteraceae (8,625 specimens; 14.05%), Fabaceae (7,929 specimens; 12.92%), Poaceae (6,324 specimens; 10.30%), Lamiaceae (3,105 specimens; 5.06%), Caryophyllaceae (2,156 specimens; 3.51%), Plantaginaceae (2,033 specimens; 3.31%), Brassicaceae (1,851 specimens; 3.02%), Apiaceae (1,707 specimens; 2.78%), Ranunculaceae (1,319 specimens; 2.15%), and Boraginaceae (1,111 specimens; 1.81%) (Fig. 2).

![Figure 2. Families with greater representation in the General collection. In blue, families of Magnoliopsida; in green, families of Liliopsida.](image)

![Figure 3. Genera with greatest number of specimens in the General collection (A). In blue, genera of Magnoliopsida (M); in green, genera of Liliopsida (L). Number of specimens collected for each genus plus associated duplicates (B).](image)
Among the best represented genera are *Centaurea* (1,538 specimens), *Trifolium* (1,406 specimens), *Festuca* (811 specimens), *Euphorbia* (768 specimens), *Plantago* (750 specimens), *Ranunculus* (739 specimens), *Medicago* (724 specimens), *Silene* (722 specimens), *Quercus* (675 specimens), and *Bromus* (610 specimens) (Fig. 3). The two genera with the highest specific diversity are *Centaurea* (102 spp.) and *Festuca* (59 spp.), followed by *Trifolium* (41 spp.), *Silene* (40 spp.), *Euphorbia* (37 spp.), *Ononis* (37 spp.), *Genista* (35 spp.), *Ranunculus* (34 spp.), *Astragalus* (28 spp.), and *Teucrium* (27 spp.).

Taxonomic ranks

Kingdom: Plantae
Phylum: Tracheophyta
Class: Cycadopsida, Equisetopsida, Ginkgoopsida, Liliopsida, Magnoliopsida, Pinopsida, Polypodiopsida, Psilotopsida.
Vascular plants dataset of the COFC herbarium

Geographic coverage

Most of the specimens in the collection are from Spanish territory (60,847 specimens; 99.14%), with the peninsular area being the best represented (Fig. 4). Less than 1% of the specimens come from bordering countries, such as Portugal (316 specimens), Morocco (185 specimens), and France (11 specimens). The specimens collected elsewhere — in Andorra (5 specimens), Norway (4 specimens), Switzerland (2 specimens), Great Britain (2 specimens), Ireland (1 specimen), Israel (1 specimen), Italy (1 specimen), and the USA (1 specimen) —, have a symbolic presence, representing only 0.03% of the collection.

Within Spain, Andalusia (Southern Spain) is the region with the highest number of specimens; specifically, within Andalusia, the province of Cordoba has the greatest representation (46,505 specimens), followed by Seville (2,244 specimens), Jaen (1,714 specimens), Huelva (1,640 specimens), and Cadiz (1,396 specimens) (Fig. 4).

Figure 4. Geographical distribution (provincial representation) of specimens of the General collection in Spain. The star marks Cordoba province.
In the province of Cordoba, an important collection effort was made immediately after creation of the herbarium (Fig. 5). This has included all the territories of the Sierra Morena natural areas (northern half of the province), and the Campiña and Sierra Subbética in the southern half. These include the territories of the Cardeña–Montoro and Sierra de Hornachuelos Natural Parks, in the Sierra Morena, and the Natural Park of the Sierra Subbética and the Natural Reserves of the Humid Areas, in the South of Cordoba province.

Temporal coverage

The collection includes specimens collected from 1935 to the present (Fig. 5). The oldest specimens correspond mainly to particular donations and exchanges, mainly involving renowned Spanish botanists such as José Cuatrecasas (1903–1996), Salvador Rivas Goday (1905–1981), Francisco Bellot (1911–1983), Bartolomé Casaseca (1920–1998), and José Vicente Cordeiro Malato-Beliz (1920–1993). The largest number of specimens (about 44,300 specimens, with 6,300 duplicates) was collected at the end of the 1970s and in the mid-1980s, coinciding with the years of creation of the University of Cordoba and COFC (Fig. 5). In this period, the source of the material was mainly PhD theses on flora and chorology, involving lecturers and contracted staff of the Department of Botany, Ecology and Plant Physiology, and also the surveys and taxonomic revisions of genera within the framework of the project "Flora Vascular de Andalucía Occidental" (Valdés et al. 1987). Subse-

![Figure 5](image-url)
Figure 5. Number of specimens (orange), and specimens plus associated duplicates (black) collected between the years 1935 and 2018. The principal highlights are indicated, and the star marks the year of creation of COFC.
Vascular plants dataset of the COFC herbarium

Subsequently, the material incorporated into the herbarium had its origin in more or less periodic collections carried out throughout the province of Cordoba, from which numerous chorological publications of local interest were derived. A new boost to the collection took place during the period 2007–2018 (about 4,900 specimens, with 4,600 duplicates, Fig. 5). In this case mainly due to the collections made in the Iberian Peninsula as part of the “Flora iberica” project (National Plan of R+D+i of the Government of Spain; see the later section Funding of the maintenance and databasing of the herbarium), and this is around 8% of the specimens that the collection houses.

On the other hand, as expected, high seasonality can be seen in the collections: more contributions are made in spring and summer than in winter. Thus, the months of greatest collection effort are April, May and June (almost 40,000 specimens); while the minor ones are December, January and November (only about 2,500).

Step description

Plant processing procedures

The usual procedures for the processing and storage in the herbarium of the plant material have been employed. The fresh material is dried by pressing, sometimes with simultaneous drying using an oven or heater. When it is dry, and prior to storage, the rotary freezing technique (at -18 °C) is used for four days in order to conserve the material and prevent its destruction by fungi and insects, thus avoiding subsequent infestations. This procedure is repeated approximately every six months. The specimens are stored in boxes inside compactor cabinets located in an isolation unit with controlled temperature and humidity. The families are arranged alphabetically, as are the genera within each family and the species within each genus.

Labeling

Once processed, the specimens go along the assembly line, where they are assembled and labeled. Subsequently, they are assigned a COFC accession number and databased using Elysia v1.0. software (Pando et al. 1996–2016). It is estimated that 99.7% of the labels in the collection specify the place of collection. The information on the labels is heterogeneous as regards the origin of the material, and depends largely on the collector and his/her purpose. A complete label includes taxonomic information related to the identity of the sample (scientific name and authorship) and information on the place of collection: country, province, municipality, a more precise geographic location, GPS coordinates (and the projection system), altitude, ecological or descriptive data, date, field number, and collector(s) and identifier name(s).
Quality control

The care and control of the collection includes its monitoring through the management and registration of all incoming and outgoing botanical gatherings that are the responsibility of the Herbarium Service, with the curator’s supervision. The process includes space planning, sample relocation, sample assembly and repair, freezing to minimize the potential for insect infestation, and general repairs. Periodic checks are made in the storage area of the collections to detect possible effects of insects and harmful fungi.

The quality control is mainly performed at three levels:

1. **In the identification phase/taxonomic criteria:** For their inclusion in the herbarium, the specimens must be identified at the level of the species and, if appropriate, the infraspecific category, although for many genera there is material without identification of the species that is waiting to be reviewed by specialists. The main works used to identify the material are: "Flora Vascular de Andalucía Occidental" (Valdés et al. 1987), "Flora Vascular de Andalucía Oriental" (Blanca et al. 2009), "Flora iberica" (Castroviejo 1986–2019), and "Flora Europaea" (Tutin et al. 1964–1980). In cases where a modification of the original identification is made, it is reflected in the database as a revision. Currently, work is being done on the organization and delimitation of families according to The Angiosperm Phylogeny Group III (APG III 2009) and IV (APG IV 2016). Regarding nomenclature, it is checked with several taxonomic authorities, such as The Plant List (http://www.theplantlist.org/), Tropicos (http://www.tropicos.org), IPNI (The International Plant Names Index, http://www.ipni.org/), and Euro+Med PlantBase (the information resource for Euro-Mediterranean plant diversity, http://www2.bgbm.org/EuroPlusMed/), as well as the valid name recognized in "Flora iberica" (http://www.floraiberica.es/).

2. **Georeferencing and technical validation:** It is estimated that only 33% of the specimens in the collection contain information regarding the coordinates (UTM, MGRS, or geographic) of the place of origin, with greater or lesser precision. At present, the georeferencing of the collection is being done using MGRS coordinates (1 km² of precision) based on the information contained in the original label, using the tools of Google Earth (http://www.google.com/earth/index.html) and Iberpix (http://www.ign.es/iberpix2/visor/). These coordinates are automatically transformed into geographic coordinates (latitude and longitude are expressed in decimal degrees in the WGS84 datum) when the herbarium information is transferred to the GBIF portal.

3. **In the phase of databasing and data export to the GBIF/Data records network:** The first stage of the databasing of the collection was carried out with Herbar v3.7.1 software (Pando et al. 1994–2010), but afterwards all the information in the collection was transferred to Elysia v1.0 software (Pando et al. 1996–2016), which is
the one used today. It is estimated that around 86% of the material housed in the herbarium has been databased. The first transfer of data from COFC to the GBIF portal included data for the period 2006–2012 (56,081 records), and very recently the corresponding data up to and including 2018 were exported (a total of 60,566 records, excluding *Festuca*). The Darwin Core biodiversity standards were used (DarwinTest v3.3 tool; Ortega-Maqueda and Pando 2008) before uploading the information to the GBIF portal. The Darwin Core file (http://rs.tdwg.org/dwc/), encoded in UTF-8, is generated regularly and is available for download on the GBIF data portal via the Integrated Publishing Toolkit (IPT) of the University of Cordoba (version 1.8, published 2019; https://ipt.gbif.es/resource?r=herbariocofc#versions), through the GBIF Spanish network. The list of elements in the Darwin Core standard published through the GBIF network as well as their definitions and other information of interest can be found at https://dwc.tdwg.org.

Funding of the maintenance and databasing of the herbarium

COFC herbarium does not yet have its own funding. Since its creation, it has been dependent on the personnel and resources of the Department of Botany, Ecology and Plant Physiology of the University of Cordoba. Only more recently has it received additional funding, fruit of the efforts made by the two Curators who have been in charge, Profs. E. Ruiz de Clavijo (1977–2010) and J. A. Devesa (2011–present). It had two grants at the beginning of the databasing of the collection (Complementary Funding of the Ministry of Education and Science), and since 2011 it has benefitted from the work of technical personnel hired for the maintenance, databasing, and georeferencing of the collection, in some cases financed by the Government of Spain, and in others by the Junta de Andalucía. These grants and contracts are summarized below.

Funding received for the initial digitalization of the collection

Funding body: Ministry of Education and Science
Reference: CGL2007-28813-E
Lead researcher: E. Ruiz de Clavijo
Duration: January 2008 to December 2008
Amount: 32,900 euros

Funding body: Ministry of Education and Science
Reference: CGL2008-02241-E/BOS
Lead researcher: E. Ruiz de Clavijo
Duration: January 2009 to December 2009
Amount: 23,000 euros
Contracts of the complementary actions framework

Program: Adaptation of the Herbaria of the Faculty of Sciences of the University of Cordoba to the GBIF framework (Subprogram: Complementary Actions)

Funding body: Ministry of Science, Innovation, and Universities

Lead researcher: E. Ruiz de Clavijo

Duration: July 2006 to April 2007

Program: Adaptation of the Herbaria of the Faculty of Sciences of the University of Cordoba to the GBIF framework (Subprogram: Complementary Actions)

Funding body: Ministry of Science, Innovation, and Universities

Lead researcher: E. Ruiz de Clavijo

Duration: January 2008 to December 2008

Program: Adaptation of the Herbaria of the Faculty of Sciences of the University of Cordoba to the GBIF framework (Subprogram: Complementary Actions)

Funding body: Ministry of Science, Innovation, and Universities

Lead researcher: E. Ruiz de Clavijo

Duration: March 2009 to December 2009 (extended until 30–10–2010)

Contracts for technical staff member:

Program: Technical Personnel to Assist Research

Funding body: Ministry of Science and Innovation

Reference: PTA2010-3438-I

Lead researcher: J. A. Devesa

Duration: February 2011 to January 2014

Program: Technical Personnel to Assist Research

Funding body: Ministry of Education and Vocational Training

Reference: PTA2017-13723-I

Lead researcher: J. A. Devesa

Duration: 2019–2021

Contracts from the Youth Employment Plan:

Program: National Youth Guarantee System

Funding body: Ministry of Employment and Social Security

Lead researcher: PEJ-2014-A-82677

Researcher: J. A. Devesa

Duration: 2016–2017

Program: National youth guarantee system and the youth employment operational program

Funding body: Junta de Andalucía

Reference: EJ-17-Herb
Lead researcher: J. A. Devesa
Duration: June 2017 to May 2018
Program: National youth guarantee system and the youth employment operational program
Funding body: Junta de Andalucía
Reference: EJI-17-RNM-260
Lead researcher: J. A. Devesa
Duration: January 2018 to July 2019
Program: National youth guarantee system and the youth employment operational program
Funding body: Ministry of Economy, Industry, and Competitivity, and Junta de Andalucía
Reference: EJI-17-RNM-260
Lead researcher: J. A. Devesa
Duration: March 2019 to February 2020

Pending or delayed tasks

The following activities are being prioritized by the technical staff.

a) **Mounting, databasing, and inclusion of specimens from old collections:** About 10,000 sheets of unmounted and unfiled specimens that accumulated in the period 1977–1987 are pending allocation of a sheet number or accession number, as well as databasing and inclusion in the General collection. Also, some 4,000 sheets have been allocated an accession number, but their data have not been registered in the database, probably due to a lack of technical personnel during that period and/or the absence of standardized databases. All this material has been identified, and most of it has been mounted. It has been arranged by family in distinctive blue boxes; currently, it is being databased using Elysia v1.0.

These data were not available and so these specimens were not included in the taxonomic analysis or geographical coverage of this paper.

b) **Update the software and publication of data in GBIF:** First, the migration of the database to the new version 2.0 of the Elysia software (Pando et al. 2019) will be carried out. Regarding the publication of the data in GBIF, the records of *Festuca* need to be uploaded. This will be done once the study of its taxonomy and nomenclature has been completed (estimated date: December 2019). However, this paper has taken into account these records (811 so far) for the description of the collection.
Interest and use of the collection

The General collection of COFC is fundamental for our knowledge of the Andalusian flora, and had great importance in the writing of the "Flora Vascular de Andalucía Occidental" (Valdés et al. 1987). It contains a vast representation of specimens from the province of Cordoba, whose study has deepened our knowledge of its flora, reflected in numerous publications in the last 20 years (e.g., Ruiz de Clavijo and Devesa 2010, López Tirado and Hidalgo 2014, López Tirado et al. 2013, 2015, Martínez-Sagarra et al. 2016, Muñoz et al. 2017, Reyes et al. 2017, Devesa et al. 2018, in press, among the most recent). It has also been fundamental for the taxonomic studies that have been carried out in the "Flora iberica" project (Castroviejo 1986–2019), especially from 2007 to the present, a period in which four subprojects have been developed, coordinated by Dr. J.A. Devesa from the University of Cordoba (projects CGL2008-02982-C03-03; CGL2011-28613-C03-02; CGL2014-52787-C3-3-P; CGL2017-85204-C3-3-P, of the Government of Spain). These focused mainly on the preparation of the taxonomic syntheses of the genera Centaurea (Devesa et al. 2014) and Festuca (taxonomic revision in progress), two of the most complex genera of the peninsular flora with an excellent representation in the collection. It is estimated that 16% of all the material preserved in the collection corresponds to duplicates, and these are especially common for the genera Centaurea (1,904 duplicates, Fig. 3B) and Festuca (1,906 duplicates, Fig. 3B), and for whose taxonomic synthesis abundant material was necessary in order to cover all their diversity, even at the population level (e.g., Invernón and Devesa 2013, Devesa 2016, Martínez-Sagarra and Devesa 2015, 2019, López et al. 2016, 2017). Besides, much of the material conserved in COFC also been used in morphological and biogeographic studies (Aedo et al. 2015, Cano et al. 2017, Devesa et al. in press), molecular and phylogeographic studies (Arnelas et al. 2018, Benítez-Benítez et al. 2018), foliar anatomy studies (Martínez-Sagarra et al. 2017), and genome size analysis (Martínez-Sagarra et al. work in progress).

In addition, 34 types (7 holotypes and 27 isotypes) of various described taxa of the Iberian Peninsula are preserved in COFC (Table 2).

Dataset description

Object name: Darwin Core Archive Dpto de Botánica, Ecología y Fisiología Vegetal (COFC). Facultad de Ciencias. Universidad de Córdoba

Character encoding: UTF-8

Format name: Darwin Core Archive format

Format version: 1.0

Distribution: https://doi.org/10.15468/fdzzal

Publication date of data: 2019-07-19

Language: Spanish

Licences of use: Creative Commons Attribution Non Commercial (CC-BY-NC) 4.0 License
Table 2. Type material of vascular plants conserved in COFC. Acronyms of the herbaria according to Thiers (2019). Holotypes and isotypes are listed in order of publication of the taxa.

<table>
<thead>
<tr>
<th>Type</th>
<th>Taxon and authority</th>
<th>Publication</th>
<th>Herbarium voucher</th>
<th>Collection location (direct quote)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holotype</td>
<td>Centaurea susannae</td>
<td>Phytotaxa 74: 42, 43 (2012)</td>
<td>COFC 57935 (1 isotype in COFC)</td>
<td>Algarve, Cabo de San Vicente, 6 May 2010</td>
</tr>
<tr>
<td>Holotype</td>
<td>Centaurea nolensworthiae</td>
<td>Nordic J. Bot. 30: 422 (2012)</td>
<td>COFC 59475 (1 isotype in COFC)</td>
<td>Cádiz, Tarifa, Sierra de Ojén, Loma de El Chivato, 19 June 2010</td>
</tr>
<tr>
<td>Holotype</td>
<td>Centaurea stuessyi</td>
<td>Phytotaxa 115: 43, 45 (2013)</td>
<td>COFC 57443 (1 isotype in COFC)</td>
<td>Tarragona, Rasquera, bulanario de Cardós, 1 July 2009</td>
</tr>
<tr>
<td>Holotype</td>
<td>Mentisalca cabezudoi</td>
<td>Nordic J. Bot. 32: 18, 19 (2014)</td>
<td>COFC 31890 (1 isotype in COFC)</td>
<td>Granada, Jerez del Marquesado, barranco de Alcázar, 13 June 2007</td>
</tr>
<tr>
<td>Holotype</td>
<td>Festuca greuteri</td>
<td>Phytotaxa 395: 253 (2019)</td>
<td>COFC 65825 (1 isotype in COFC)</td>
<td>Granada, Sierra de Guillmona, puerto de la Losa, 4 June 2014</td>
</tr>
<tr>
<td>Holotype</td>
<td>Festuca greuteri subsp. camaronensis</td>
<td>Phytotaxa 395: 257 (2019)</td>
<td>COFC 65824 (9 isotypes in COFC)</td>
<td>Málaga, Villanueva del Rosario, Sierra de Camarolos, 10 June 2015</td>
</tr>
</tbody>
</table>
Acknowledgements

We gratefully acknowledge the technical staff members of COFC, especially P. Abad for her help with data cleaning. We also thank K. Cezón (GBIF Spain) for her help in checking and uploading this resource. This study was supported by the "Flora iberica" project (CGL2008-02982-C03-03; CGL2011-28613-C03-02; CGL2014-52787-C3-3-P; CGL2017-85204-C3-3-P) of the Spanish Government, co-financed by The European Regional Development Fund (ERDF).

References

Saxifraga damingshanensis (S. sect. Irregulares, Saxifragaceae), a new species from Guangxi, China

Wan-Yi Zhao¹*, Kai-Kai Meng¹*, Qiang Fan¹, Jian-Hua Jin¹, Wen-Bo Liao¹

¹ State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

Corresponding author: Wen-Bo Liao (lsslwb@mail.sysu.edu.cn); Jian-Hua Jin (lssjjh@mail.sysu.edu.cn)

Academic editor: Doug Soltis | Received 2 June 2019 | Accepted 3 September 2019 | Published 16 October 2019

Abstract

Saxifraga damingshanensis (Saxifragaceae), a new species from Damingshan Nature Reserve in Guangxi Province, is described and illustrated. A morphological comparison between the new species and its putative relatives, S. mengtzeana and S. luoxiaoensis, is presented. The new species is morphologically similar to S. mengtzeana, but it can be easily distinguished by its non-peltate leaf, both surfaces of mature leaf blade covered with white glandular trichome, petals 3-veined and margin entire. Phylogenetic analysis, based on two chloroplast DNA regions (matK and psbA-trnH), confirmed that the new species belongs to S. sect. Irregulares. The new species is currently only known from Damingshan, Guangxi and we assign it an IUCN Red List preliminary status as Data Deficient.

Keywords

China, chloroplast gene, phylogeny

Introduction

Saxifraga L. (Saxifragaceae) is widely distributed throughout the Northern Hemisphere and comprises ca. 440–450 species (Pan et al. 2001; Tkach et al. 2015a, b). Numerous previous molecular phylogenetic studies suggested that Saxifraga is monophyletic, providing that S. sect. Micranthes (Haw.) D.Don is excluded and the genus Micranthes Haw. recognised. (Soltis et al. 1996; Prieto et al. 2013; Deng et al. 2015; Tkach et al. 2015a, b). Saxifraga sect. Irregulares Haw., characterised by long-petiolate leaves, leaf-
less flowering stems with small bracts, stamens with club-shaped filaments and pollen grains with numerous microchannels in the tectum, is the earliest-diverging named clade in *Saxifraga* (Soltis et al. 2001; Zhang et al. 2015; Tkach et al. 2015b).

During a botanical expedition to Damingshan National Nature Reserve, Wuming district, central Guangxi Province in September 2018, we discovered an unknown species of *Saxifraga* in Longtou Peak. Its mature leaves are densely covered with white trichomes and the abaxial surface is densely purple-spotted. After carefully checking specimens and literature, as well as morphological and molecular studies, we confirm that it is a new species of *Saxifraga* and it is described below.

Materials and methods

We collected more than 20 living individuals of the presumed new species for comparisons and taxonomical treatment. Specimens of *Saxifraga* sect. *Irregulares*, available at herbaria (PE, IBSC, SYS and IBK) and digital photos of all herbarium specimens of *S*. *luoxiaoensis*, *S*. *mengtzeana* Engl. & Irmsch., preserved in the Chinese Virtual Herbarium (http://www.cvh.org.cn/), have been checked. Five main characters (leaf shape, leaf margin, spots on the abaxial surface of leaf, petal shape and trichomes on plants) of these three species were compared both in the wild and in the herbarium.

To determine the systematic position of *Saxifraga damingshanensis*, we further sampled five individuals of the presumed new species for a phylogenetic study. The geographic sampling information of these individuals was recorded by a Garmin GPS unit (GPSMAP 62sc, Taiwan) and the voucher specimens were deposited at Sun Yat-sen University Herbarium (SYS) (Table 1). The final molecular dataset comprises 19 accessions representing eight species of *S*. sect. *Irregulares*, of which five accessions were newly generated and 14 accessions were downloaded from GenBank (Table 1).

The total DNA was extracted with the modified CTAB method (Doyle and Doyle 1987). The *psbA-trnH2* and *matK* intergenic regions were amplified using previously reported primers (Tate and Simpson 2003; Zhang et al. 2019). PCR amplifications were performed following Chen et al. (2016). Sequences were aligned with MEGA version 6.0 and subsequently manually adjusted (Tamura et al. 2013). Phylogenetic reconstructions were carried out with Maximum Likelihood (ML) and Bayesian Inference (BI) analyses. ML was run by IQ-TREE 1.6.10 with 20,000 ultrafast bootstraps and SH-like approximate likelihood ratio test (aLRT) of 10,000 replicates (Nguyen et al. 2015). BI was executed in MrBayes version 3.2 (Ronquist et al. 2012), with four chains for at least 20,000,000 generations to make the average standard deviation of
Saxifraga damingshanensis, a new species from Guangxi, China

Results

Morphological comparison

In morphology, the putative new species is closely related to Saxifraga mengtzeana and their morphology comparisons are presented in Table 2. These two species share such features as having stolons absent, inflorescences and pedicels covered with glandular hairs, white flowers without pink markings and base of three short petals with yellow plot. However, the new species differs from S. mengtzeana by having leaf base cordate to deep cordate (vs. usually peltate), leaves papery or nearly leathery (vs. leathery), adaxial surface of the mature leaf with glandular trichome (vs. nearly glabrous) and longest petal 3-veined, margin entire (vs. 8-veined, margin sparsely denticulate). Moreover, S. damingshanensis flowers from August to October, while S. mengtzeana flowers from March to August.
Table 2. Morphological comparisons amongst Saxifraga damingshanensis, S. luoxiaoensis and S. mengtzeana.

<table>
<thead>
<tr>
<th>Characters</th>
<th>Saxifraga damingshanensis</th>
<th>S. luoxiaoensis</th>
<th>S. mengtzeana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf shape</td>
<td>rounded or ovate, never petate</td>
<td>reniform, never petate</td>
<td>± petate, ovate</td>
</tr>
<tr>
<td>Leaf texture</td>
<td>papery or leathery</td>
<td>papery</td>
<td>leathery</td>
</tr>
<tr>
<td>Leaf base</td>
<td>cordate to deep cordate</td>
<td>cordate</td>
<td>± cordate</td>
</tr>
<tr>
<td>Leaf margin</td>
<td>5–10-lobed, lobes entire, sparsely glandular hairy</td>
<td>margin 7–9-lobed, usually double serrate</td>
<td>crenate, inconspicuous glandular hairy</td>
</tr>
<tr>
<td>Abaxial surface of leaf blade</td>
<td>with glandular trichome and purple spots</td>
<td>glabrous with red or brown spotted</td>
<td>sparsely hispid and brown spotted</td>
</tr>
<tr>
<td>Second longest petal</td>
<td>lanceolate oblong, 13–17 × 2 mm, 3-veined</td>
<td>lanceolate oblong, ca. 8–20 mm × 1.3–3 mm, 3–5-veined</td>
<td>narrowly ovate, ca. 9 × 2.2 mm, 3-veined</td>
</tr>
<tr>
<td>First longest Petal</td>
<td>lanceolate, 1.8–2.2 cm × 1.5–2.5 mm, 3-veined, margin entire</td>
<td>linear lanceolate, 16–25 mm × 1.3–3 mm, 3–5-veined, margin entire</td>
<td>sublanceolate, 19 × 3.4 mm, 8-veined, margin sparsely denticulate</td>
</tr>
<tr>
<td>Stamens</td>
<td>3.5–4.5 mm long</td>
<td>4.3–5.6 mm long</td>
<td>ca. 6 mm long</td>
</tr>
<tr>
<td>Flowering period</td>
<td>August to October</td>
<td>April to June</td>
<td>May to August</td>
</tr>
</tbody>
</table>

Phylogenetic placement of Saxifraga damingshanensis within S. sect. Irregulares

The concatenated sequences of matK (740 bp) and psbA-trnH2 (297 bp) are 1037 bp in length and 81 parsimony-informative sites were detected. Our results showed that S. ser. Rufescentes J.T.Pan is monophyletic (SH-aLRT: 100; LP: 100; PP: 1.00, Fig. 1) which is coincident with the previous study (Zhang et al. 2018). The putative new species, S. damingshanensis, was nested into S. ser. Rufescentes J.T.Pan and was strongly supported as sister to a clade consisting of S. luoxiaoensis, S. daqiaoensis and S. shennongii (SH-aLRT: 97; LP: 98; PP: 1.0).

Discussion

Based on its basal leaves with long petiolate, flower zygomorphic and stamens with club-shaped filaments, the new species could be placed within S. sect. Irregulares. Our phylogeny also supports the inclusion of Saxifraga damingshanensis within S. sect. Irregulares (Fig. 1). All examined individuals of S. damingshanensis clustered into a single lineage, thus corroborating the evidence for the new species status, based on morphology.

Our study also recovered a sister relationship of the new species with a clade comprising Saxifraga luoxiaoensis, S. daqiaoensis and S. shennongii. The close relationship amongst these species was also supported by their similar morphological characteristics. All four species have white glandular trichomes on leaf and inflorescence and white and entire petals. However, S. damingshanensis differs from the latter three species by having mature leaf and petiole with glandular trichomes (vs. mature leaf sparsely hispid or glabrous) and the abaxial surface of the leaf blade with purple spots (vs. usually yellow-brown spots). Furthermore, their phenology and distribution are different. Saxifraga damingshanensis is flowering from August to October (vs. April to June) and endemic to Damingshan, Guangxi (vs. Guangdong, Jiangxi and Hunan).
Saxifraga damingshanensis, a new species from Guangxi, China

Figure 1. Bayesian consensus tree of Saxifraga damingshanensis and related species derived from two chloroplast regions. Numbers above branches are the value of SH-like approximate likelihood ratio test (aLRT) and bootstrap value of the Maximum Likelihood (LP); numbers below branches indicate Bayesian posterior probability (PP). Asterisks denoted (*) the values of 100 or 1.00 for LP/PP. The new species is shown in bold.

Taxonomic treatment

Saxifraga damingshanensis W.B.Liao, W.Y.Zhao & J.H.Jin, sp. nov.
urn:lsid:ipni.org:names:77202383-1

大明山虎耳草

Type. China. Guangxi: Nanning city, Damingshan Nature Reserve, Longtou Peak, 23°22’58.48"N, 108°30’21.56"E, 1542 m alt., 19 September 2018, W.Y.Zhao 1208 (Holotype SYS!; Isotypes SYS!, IBSC!). (Fig. 2)

Diagnosis. *Saxifraga damingshanensis* is morphologically most similar to *S. mengtzeana*, but differs by its leaf blade with glandular trichome and purple spots abaxially, short stamens and petal entire.

Description. Perennial herbs, 15–30 cm tall. Stolons absent. Rhizomes rather short (ca. 0.3–0.7 cm), sparsely glandular trichomes. Basal leaves forming a rosette, petiole 5–15 cm long, fleshy and translucent, sparsely short glandular trichomes (ca. 2 mm); petiole base sheathed, margin with sparsely glandular trichomes; leaf blade rounded or ovate, base cordate to deep cordate, papery or leathery, 2.0–5.7 × 2.5–5.5 cm, apex obtuse, margin inconspicuous 7–15-lobed with sparsely glandular trichomes, lobes entire, adaxially dark green, densely covered glandular trichomes (2.5–4 mm), abaxially grey, sparsely covered with glandular trichomes (1.5–2.5 mm), densely covered with purple spots; palmate veins 7–11, both surfaces inconspicuous. Cauline leaves 1–2, triangular-lanceolate, 5.0–6.0 ×
Figure 2. Saxifraga damingshanensis

A Habit
B whole plant
C basal leaves rosette with long petiole, plant cover white trichomes
D flower and fruit, pedicel slender with short trichomes, filaments clavate
E adaxial leaf surface dark green, sparsely glandular piliferous
F abaxial leaf surface grey, sparsely glandular piliferous and purple spotted
G petiole with glandular piliferous
H rhizomes cover sparsely glandular piliferous, petiole base sheathed
I adaxial surface of sheath, glabrous, margin with glandular piliferous
J abaxial surface of sheath, upper with sparse glandular piliferous.
Saxifraga damingshanensis, a new species from Guangxi, China

1.5–2.0 mm, margin with sparsely glandular trichomes. Inflorescence paniculate, 15–30 cm long, 10–35-flowered; branches 4–5 cm, sparsely short glandular trichomes (0.5–1.0 mm), 2–6(8)-flowered; pedicels slender, 1.5–2.5 cm long, sparsely short glandular trichomes (ca. 0.5 mm); bracts linear, 1.5–2.5 × 0.5–0.8 mm, margin with short glandular trichomes. Flowers zygomorphic; sepals 5, spreading, narrowly ovate, 2.0–2.5 × 1.0 mm, apex obtuse, base connate, adaxially glabrous, abaxial surface and margin with sparsely short glandular trichome, becoming denser proximally, 3 veins inconspicuous. Petals 5, white; shortest 3 petals equal, ovate, base with yellow spots, 3–3.5 × 1.5 mm, apex acute, base rounded, triplinerved; the other two petals lanceolate, first longest petal lanceolate, 18–22 × 1.5–2.5 mm, apex acuminate, margin entire, glabrous, 3-veined; second longest petal narrowly ovate, 1.3–1.7 × 0.2 cm, apex acuminate, margin entire, glabrous, 3-veined. Stamens 10, filaments clavate, 3.5–4.5 mm long. Ovary ovoid, 1.5–2.5 mm long; disc obscure; carpels 2, proximally connate about 3/4; styles 2, divergent, 1.5–2 mm long. Capsule ovoid, 4–5 × 3–4 mm. Seeds elongate-ellipsoid, yellowish-brown or dark brown, the two ends slightly bent, ca. 0.6 mm, surface 3-ribbed.

Phenology. Flowering from August to October, fruiting from September to November.

Etymology. The species epithet is based on the mountain name, Damingshan and the Latin suffix, -ensis, of origin, where the new species was collected.

Distribution, ecology and conservation status. Only three populations of Saxifraga damingshanensis were discovered from Damingshan National Nature Reserve, Guangxi Province. It was observed to grow on damp cliffs and rocks in broad-leaved forests at altitudes between 1300 and 1650 m. Its known localities are well protected and more field investigations are needed to determine its wild distribution. Therefore, we suggest listing the new species as Data Deficient (DD) based on the IUCN Red List Criteria (IUCN 2019).

Acknowledgements

We thank Fan Ye and Bao-Huan Wu for the field work. We thank Su-Juan Wei and Ping Yang for providing images of herbarium specimens in IBK. We are grateful to Ke-Wang Xu and two reviewers for the valuable comments and suggestions on the manuscript. This study was supported by the Basic Work Special Project of the National Ministry of Science and Technology of China (2013FY111500) and the project of the Fourth Survey of Chinese Traditional Medicine Resources (2018-523-001).
References

Reinstatement of the Chinese endemic species

Styrax zhejiangensis

Yu-Qing Ruan¹², Yu-Long Yu³, Fen Yu¹², Guo-Xing Deng⁴, Yu-Lin Liu¹², Xue-Hui Wu¹², Ming Tang¹²

¹ College of Forestry, Jiangxi Agricultural University, No. 1101, Zhimin Rd., Nanchang, China ² Key Laboratory for Bamboo Germplasm Resources and Utilization, No. 1101, Zhimin Rd., Nanchang, China ³ Jiande Forest Farm of Zhejiang, Shiming Rd., Jiande, China ⁴ Management Bureau of Hunan Mangshan National Nature Reserve, Yizhang, China

Corresponding author: Ming Tang (tangming@jxau.edu.cn)

Academic editor: Y. Mutafchiev | Received 4 July 2019 | Accepted 12 September 2019 | Published 16 October 2019

Abstract

Styrax zhejiangensis has been treated as a synonym of *S. macrocarpus*. Examination of herbarium specimens and observation of wild living plants demonstrates that *S. zhejiangensis* is a distinct species and is clearly distinguishable from *S. macrocarpus* through its flowering phenology in which leaves and flowers open simultaneously, its smaller corolla lobes and filaments, and its white-stellate-pubescent seeds. On this basis, we reinstate *S. zhejiangensis* as an accepted species. Photographic images and a distribution map of the two species are provided. A lectotype of *S. zhejiangensis* is also designated.

Keywords

Flowering phenology, Styracaceae, *Styrax zhejiangensis*, *S. macrocarpus*, synonym

Introduction

Styrax zhejiangensis S.M. Hwang & L.L. Yu (Hwang 1983) (Styracaceae) was described on the basis of four specimens of one collection, *X. Y. He 29344* (IBSC, HHBG, NAS; Fig. 1A), from Jiande, Zhejiang Province, China. In the protologue, the authors stated that this species was similar to *S. macrocarpus* Cheng (Cheng 1938) (Fig. 1B), but differed by its bush-like habit, broadly elliptic to ovate-oblong leaves, smaller fruits, and sparsely white-stellate seeds. It was recognized by later authors, including Hwang (1987), Li and Ding (1989), Fang (1992), and Hwang and Grimes (1996), but was
synonymized with *S. macrocarpus* by Huang et al. (2003). Huang et al. (2003) purported that there were no essential morphological differences between the two species emphasized by Hwang (1983) other than the presence of stellate trichomes on the seeds in *S. zhejiangensis* versus their absence in *S. macrocarpus*, a difference which they regarded as taxonomically trivial. According to Huang et al. (2003), *S. macrocarpus* sensu lato is a species with a disjunct distribution between southeastern Hunan and western Guangdong (Fig. 2).

After critical examinations of the relevant *Styrax* specimens in major Chinese herbaria, combined with our field observations in the type localities of each entity, we find that *S. zhejiangensis* is a species distinct from *S. macrocarpus*, differing from it in a combination of taxonomically significant morphological characters. Here we provide updated detailed morphological descriptions of these two species, a table of their morphological character differences, a distribution map, photographic images, and conservation assessments.

Material and methods

Morphological comparisons were made through herbarium studies and field observations. Herbarium studies were conducted in AU, BNU, CSFI, HHBG, IBK, IBSC, JXAU, KUN, NAS and PE. Field observations were made in the type localities
Reinstatement of Styrax zhejiangensis

107

of Styrax zhejiangensis in Jiande, Zhejiang Province, and S. macrocarpus on Mang Mountain, Hunan Province. Moreover, we use IUCN Red List categories (IUCN 2012) to evaluate the conservation status of the two species.

Results and discussion

Styrax zhejiangensis differs from S. macrocarpus in a combination of morphological characters (Table 1, Figs 3–5). S. zhejiangensis produces flowers and leaves simultaneously (vs. flowers before the leaves in S. macrocarpus), has smaller flowers (4.0–5.5 cm vs. 6.0–7.5 cm in diameter) with shorter corolla lobes (1.8–2.7 cm vs. 2.8–3.8 cm) and stamens (10–12 cm vs. 14–16 cm), and has a seed surface with sparse to dense white-stellate trichomes (vs. glabrous). Furthermore, S. zhejiangensis is shrub-like, 1.5–3 m (only one individual reaches 7 m in our observation), with multiple branches from the base, whereas S. macrocarpus is tree-like, often over 7 m and with single stem. The pubescence on the corolla also helps to distinguish the two species, with S. zhejiangensis having inconspicuous pubescence or being glabrous, and S. macrocarpus having conspicuous pubescence.

Li and Ding (1989) and Hwang and Grimes (1996) described the flowering pheno

logy for Styrax zhejiangensis and S. macrocarpus and they have been confirmed in our field observation, and undoubtedly serve as a diagnostic character. Li and Ding (1989) also pointed out that the species can also be distinguished by the size of the corolla lobes and numbers of stamens. We observed a substantial difference in the size of their corolla lobes, but no distinct difference in the numbers of their stamens, with 13 to
Table 1. Morphological differences between *Styrax zhejiangensis* and *S. macrocarpus*.

<table>
<thead>
<tr>
<th>Taxonomic traits</th>
<th>Styrax zhejiangensis</th>
<th>Styrax macrocarpus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem</td>
<td>1.5–3 (–7) m, shrub-like habit</td>
<td>6–9 (–12) m, tree-like or small tree-like habit</td>
</tr>
<tr>
<td>Petiole</td>
<td>Upper 1–3 mm, middle nearly absent</td>
<td>Both upper and middle 2–5 mm</td>
</tr>
<tr>
<td>Flowering phenology</td>
<td>Leaves and flowers open simultaneously</td>
<td>Flowers open before leaves</td>
</tr>
<tr>
<td>Flower diameter</td>
<td>4.0–5.5 cm</td>
<td>6.0–7.5 cm</td>
</tr>
<tr>
<td>Corolla lobe length</td>
<td>1.8–2.7 cm</td>
<td>2.8–3.8 cm</td>
</tr>
<tr>
<td>Corolla lobe pubescence</td>
<td>inconspicuous or absent</td>
<td>Conspicuous</td>
</tr>
<tr>
<td>Stamens, number</td>
<td>13 to 16</td>
<td>11 to 15</td>
</tr>
<tr>
<td>Stamens, length</td>
<td>10–12 mm</td>
<td>14–16 mm</td>
</tr>
<tr>
<td>Seeds</td>
<td>with stellate trichomes</td>
<td>without stellate trichomes</td>
</tr>
</tbody>
</table>

16 stamens for *S. zhejiangensis* and 11 to 15 for *S. macrocarpus*. Huang et al. (2003) pointed out that the number of stellate trichomes distributed on the seed surface of *S. zhejiangensis* varies from several to dozens, which is consistent with our observation, and they considered that this character by itself cannot be used to distinguish *S. zhejiangensis* from *S. macrocarpus*. However, it should be noted that the seed surface of *S. macrocarpus* is glabrous by our observation, never with stellate trichomes. Thus, combined with the other differences observed, warrant the treatment of *S. zhejiangensis* as an accepted species distinct from *S. macrocarpus*.

Taxonomic treatment

Styrax macrocarpus Cheng (Cheng 1938: 398)

Fig. 1B, 4, 5 A2, B2, C2, D2

Type. CHINA. Hunan: Yizhang, Mang Mountain, 800 m, 21 August 1937, W. C. Cheng 7000 [from protologue] (holotype PE00027927!; isotype PE 00027979!)

Description. Trees 6–9 (–12) m tall, with a single stem, deciduous. Branchlets subterete, densely gray-brown stellate-pubescent, glabrescent. Leaves alternate, two most proximal leaves on each shoot subopposite to opposite; leaf blade broadly elliptic to ovate-oblong, 5.5–15.0 × 3.0–6.0 cm, papery, glabrous but veins stellate-pubescent, elliptic to obovate-elliptic; apex acute; base cuneate, broadly cuneate or rounded; margin subentire or apically slightly serrate; secondary veins 6 to 10 pairs, tertiary veins subparallel; adaxially plane or slightly sunken, abaxially raised. Petiole 2–5 mm long, Pedicel 9–13 mm long, densely white-stellate-tomentose; bracteoles 6–10 mm long, ovate-lanceolate. Flowers solitary, axillary, opening before leaves. Calyx 5–8 × 6–9 mm, membranaceous, densely gray-stellate-tomentose and sparsely stellate-pubescent; teeth 5 or 6, deltoid, unequall, 2–3 mm, subglabrous. Corolla diameter 6.0–7.5 cm, white, tube 3–4 mm long; lobes 6 or 7, elliptic-ovobate, 2.8–3.8 × 1.5–2.5 cm. Stamens 11 to 15, 14–16 mm long, shorter than corolla; filaments 7–10 mm long, basally densely white-stellate-pubescent; anthers 5–7 mm long. Fruit solitary, axillary, ovoid, 2–3 × 2.0–2.5 cm, densely gray-stellate-pubescent, apex shortly pointed. Seeds ovoid-ellipsoid, irregularly rugose, glabrous.
Distribution and habitat. *Styrax macrocarpus* is distributed between southeastern Hunan and western Guangdong (Fig. 2). It grows in sparse forests, valleys or at forest margins at elevations between 130 and 230 m a.s.l.

Phenology. Flowering from mid- to late April and fruiting in August and September.
Figure 4. *Styrax macrocarpus* (Yizhang, Hunan, China) **A** habitat and habit; red arrow indicates *S. macrocarpus* **B** inflorescence **C** leaf blades in adaxial (left) and abaxial (right) view **D** flower (top view) **E** flower (back view) **F** flower (side view) **G** corolla lobes **H** sepals (two sepals pulled apart at the lobe margins of one calyx) **I** stamens. Photographed by Yu-Qing Ruan and Ming Tang.

Additional specimens examined. CHINA. Hunan: Yizhang, S.H. Chun 2889 (AU, IBK, IBSC, KUN, PE), 5408 (IBSC), Central South Forestry Institute internship team 02-3 195 (CSFI), M.S Huang 112743 (IBSC), H.S. Liao 15727 (CSFI), P.H.
Reinstatement of *Styrax zhejiangensis*

Notes. The two specimens collected from Mengla County, Yunnan (Y. M. Xia 245, HITBC) and Yulin, Guangxi (Y.S. Wu 0289, IBK) respectively, which were also designated as *Stytax macrocarpus* on the sheets, are confirmed to be wrongly identified and should be *S. chinensis* (Liang 1980: 230), a widely distributed species in the southernmost provinces of China such as Guangdong, Guangxi, Yunnan, Fujian, as well as Southeast Asia. *S. chinensis* could be easily distinguished from *S. macrocarpus* by its bigger (8–23 × 3–12 cm vs 5.5–15.0 × 3.0–6.0 cm), thick-leathery leaves (vs papery) leaves.

Styrax zhejiangensis Hwang (Hwang 1983: 75)

Fig. 1A, 3, 5A1, B1, C1, D1

Type. CHINA. Zhejiang: Jiande, northeast of Long River, along stream, 27 June 1958, X. Y. He 29344 (lectotype, here designated, IBSC0002732!; isolectotype IBSC0497542!; isolectotype HHBG-HZ044271!; isolectotype NAS00072216!).

Description. Shrubs, 1.5–3(–7) m tall, often branched at base, deciduous. Branchlets subterete, brown to grayish brown, glabrous. Leaves alternate but subopposite on basal part of branchlet; leaf blade broadly elliptic to ovate-oblong, 2.5–8.0 × 2.0–5.0 cm, papery, adaxially glabrous, abaxially glabrous but veins sparsely stellate-villous, base broadly cuneate to rounded, margin denticulate to subentire, apex acute, secondary veins 5 to 10 pairs, tertiary veins reticulate; adaxially plane or slightly sunken, abaxially raised. Petiole: those of upper leaves 1–3 mm, those of middle nearly sessile. Pedicel 7–13 mm long, densely white-stellate-tomentose; Flowers solitary, axillary, opening simultaneously with leaves. Calyx 5–8 × 5–10 mm, membranaceous; teeth 5 or 6, deltoid, unequal, 1.0–2.5 mm, apex white-glandular-dotted. Corolla diameter 4.0–5.5 cm, white, tube 3–4 mm long; lobes 6 to 8, elliptic-ovate, 1.8–2.7 × 1.0–1.6 cm. Stamens 13 to 16, 10–12 mm long, shorter than corolla; filaments 5–8 mm long, basally densely white-stellate-pubescent; anthers 4–5 mm long. Fruit solitary, axillary, ovoid, 1.8–2.0 × 1.0–1.2 cm, densely gray-stellate-pubescent, apex shortly pointed. Seeds ovoid-ellipsoid, irregularly rugose, sparsely or densely white-stellate-pubescent.

Distribution and habitat. *Styrax zhejiangensis* is only found in Jiande, Zhejiang Province, distributed in Taohuawu, Long River Forest Area (Fig. 2). It grows in sparse forests or at forest margins at elevations between 130 and 230 m a.s.l.

Phenology. Flowering in early April and fruiting in August and September.

Additional specimens examined. CHINA. Zhejiang: Jiande, G.Y. Li et al. L 0150 (PE); G.Y. Li et al. L 0154 (PE); Y.Q. Ruan & Y.L. Liu RL 31 (JXAU); Y.Q. Ruan & Y.L. Liu RL 46 (JXAU).
Figure 5. Morphological comparison between *Styrax zhejiangensis* (A1, B1, C1, D1) and *S. macrocarpus* (A2, B2, C2, D2). A1, A2 Flower B1, B2 corolla lobes C1, C2 stamens D1, D2 seed (Note the enlarged stellate trichomes in the red circle in figure D1). Photographed by Yu-Qing Ruan and Ming Tang.
Conservation status of *Styrax zhejiangensis* and *S. macrocarpus*

Styrax zhejiangensis is a narrowly distributed species; it is only found in Jiande with a population of less than 100 individuals. Despite the wide distribution of *S. macrocarpus*, it is mainly distributed on Mang Mountain and is not common. According to our observation, the natural regeneration of both of the two species is very poor. Following IUCN Red List categories (IUCN 2012), we categorize *S. zhejiangensis* as critically endangered under criteria B and D and *S. macrocarpus* as endangered under criteria B.

Acknowledgements

We are grateful to Dr. Chen Ren, Dr. Peter W. Fritsch and Dr. Yasen Mutafchiev for their valuable comments on the manuscript. We also thank the curators of AU, BNU, CSFI, HHBG, IBK, IBSC, JXAU, KUN, NAS and PE for access to their specimens and allowing us to use their scanned images of specimens. This work was supported by the National Natural Science Foundation of China (grant no 31960043, 31500166) and the Science and Technology Research Project of Jiangxi Education Department (grant no. GJJ170255).

References

Li GY, Ding L (1989) Revision and supplement of morphological characteristics of *Styrax zhejiangensis*. Journal of Zhejiang Forestry College 6(4): 443–444. [In Chinese]

Synsepalum chimanimani (Sapotaceae),
a new species from the Chimanimani Mountains
of Mozambique and Zimbabwe, with notes on the
botanical importance of this area

Saba Rokni¹, Bart Wursten², Iain Darbyshire¹

¹ Herbarium, Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK ² Herbarium, Nieuwelaan 38, Meise 1860, Belgium

Corresponding author: Iain Darbyshire (i.darbyshire@kew.org)

Abstract

Synsepalum chimanimani S.Rokni & I.Darbysh., sp. nov., a small tree endemic to the forests of the southern foothills of the Chimanimani Mountains of Mozambique and Zimbabwe, is described and illustrated. The differences in morphology and distribution between the new species and the related S. kaessneri and S. muelleri, with which it has been confused, are clarified. The new species is globally Endangered due to ongoing habitat loss within its restricted range. The botanical importance and conservation of the Chimanimani foothills is also discussed, and they are highlighted as a candidate Important Plant Area.

Keywords

conservation, herbarium, Important Plant Area, Makurupini, taxonomy

Introduction

Synsepalum (A.DC.) Daniell is a genus of approximately 35 species of evergreen shrubs or trees native to tropical Africa (Pennington 1991; Borg et al. 2019). The species and groups of species in this genus are often very distinct, which has caused previous authors to attempt to subdivide it into a number of smaller genera including Afrosersalisia A.Chev., Pachystela Radlk. and Vincentella Pierre (see, for example, Hemsley 1968; Kupicha 1983), resulting in an extensive synonymy. However, the characters used to
define these genera have a reticulate pattern of variation, and the lack of correlation between these characters precludes any subdivision of this group except on a single character basis, which results in different groupings according to which character is weighted. This unsatisfactory generic classification led to the segregate genera being united under *Synsepalum* by Pennington (1991).

In a recent molecular phylogenetic study by Borg et al. (2019), which used nuclear ribosomal DNA and plastid trnH–psbA sequences to elucidate relationships within and between *Synsepalum* and *Englerophytum* K.Krause, neither genus was supported as monophyletic. This study identified six major lineages within this clade, and provided morphological evidence in support of these lineages. However, only 11 species of *Synsepalum* and eight (out of 19) species of *Englerophytum* were sampled in this study, and the authors concluded that more morphological and molecular data are required before making final taxonomic decisions regarding the placement of species in this clade and whether or not to reinstate some of the former segregate genera.

The new species of *Synsepalum* described here, recorded from the lowland forests of the Chimanimani Mountains on the border of Mozambique and Zimbabwe, has previously been treated as conspecific with *S. kaessneri* (Engl.) T.D.Penn. (Kupicha 1983, as *Afrosersalisia kaessneri* (Engl.) J.H.Hemsl.). *Synsepalum kaessneri* is otherwise a rare species of lowland forest in the Eastern Arc Mountains and adjacent lowlands of Kenya and Tanzania, with the nearest populations nearly 1,500 km NNE of the Chimanimani Mountains. However, few previous collections were available from Mozambique and Zimbabwe, and only fruiting and sterile specimens had been collected until recently. Further specimens of the Chimanimani *Synsepalum* species were collected in October 2013 in the foothills of the southern Chimanimani massif in Mozambique by Bart Wursten, including the first specimen from this area bearing flowers (*Wursten BW897*). Additional specimens of the same taxon from the same area were collected by M. Cheek and J. Timberlake et al. in 2015 under a Darwin Initiative project focussing on the conservation of the Chimanimani forest zone in Mozambique (Timberlake et al. 2016a). Examination and comparison of these new collections with existing collections of *Synsepalum kaessneri* showed that, although the plants collected in Mozambique and adjacent Zimbabwe are very similar and closely related to *Synsepalum kaessneri*, they differ in several characters and so are considered to be different, allopatric species.

In their comprehensive guide to the trees and shrubs of Mozambique, Burrows et al. (2018, p. 744) included the Chimanimani taxon within *Synsepalum muelleri* (Kupicha) T.D.Penn. (formerly *Vincentella muelleri* Kupicha), a species that occurs in submontane forest in northern Mozambique and southern Malawi (Kupicha 1983). The plants in the photographs in Burrows et al. (2018) (*Wursten BW887* and *BW897*) are the Chimanimani taxon rather than *Synsepalum muelleri* sensu stricto. There are several notable differences between the two taxa, and they are clearly not conspecific.

In this paper we describe the Chimanimani taxon as a new species and clarify the differences in morphology and distribution between our new species and *S. kaessneri* and *S. muelleri*. We also present a distribution map and list of specimens examined for the three species and discuss the conservation and botanical importance of the Chimanimani foothills.
Methods

Specimens of Synsepalum species in the Kew herbarium (K), the British Museum of Natural History (BM), Institute for Agricultural Research of Mozambique (LMA), National Herbarium and Botanic Garden, Harare (SRGH) and on loan from Meise Botanic Garden Herbarium (BR) were examined. Online herbaria BR (http://www.botanicalcollections.be/#/en/home), LISC (http://maerua.iict.pt/colecacoes/herb_simplesearch.php), WAG (https://bioportal.naturalis.nl/?language=en), E (https://data.rbge.org.uk/search/herbarium/), MO (https://www.tropicos.org/) and US (https://collections.nmnh.si.edu/search/botany/) (acronyms according to Thiers 2019), JS-TOR Global Plants and the Flora of Mozambique website (Hyde et al. 2019) were also checked and all specimens with images available are cited. The countries in the “Specimens examined” sections are listed alphabetically.

Thirty qualitative and quantitative characters were examined in specimens of S. kaessneri and the newly described species (see Suppl. material 1). Measurements were made using a Leica Wild M8 stereo microscope and a graduated ruler (0.5 mm graduations). All characters were measured on dry material, except internal floral characters which were measured from a rehydrated flower. The terminology used follows Beentje (2010). The distribution map (Fig. 3) was produced in SimpleMappr (https://www.simplemappr.net) using georeferenced point localities.

In the Discussion section the application of Important Plant Areas (IPA) criteria follows Darbyshire et al. (2017). The abbreviations used for IUCN Red List assessments follow IUCN (2012).

Taxonomic treatment

Synsepalum chanimani S.Rokni & I.Darbysh., sp. nov.
urn:lsid:ipni.org:names:77202384-1
Figures 1A–K, 2

Type. MOZAMBIQUE. Manica Province: Magorogodo hills, Zomba Community, 19°54′28″S, 33°11′4″E, c. 559 m alt., fl. and fr. 28 October 2013, B.T. Wursten BW897 (holotype: BR!, BR0000020700003)].

Diagnosis. This species differs from *Synsepalum kaessneri* (Engl.) T.D.Penn. in the generally smaller (7.9–12.6 x 1.7–3.4 cm versus 9.8–16.7 x 2.8–5.2 cm) narrowly elliptic leaves with a long and narrow acuminate tip versus oblanceolate leaves with a short and broad acuminate tip (see illustration, Fig. 1E, L); flowers sessile or almost so with pedicels less than 1 mm long (extending to 2 mm long in fruit) versus flowers stalked with pedicels 1–3 mm long (extending to 3–5 mm in fruit); shorter corolla tube (0.75–0.8 mm long versus 1.2 mm long) and shorter (1.45–1.5 mm versus 1.8–1.9 mm), broadly ovate versus ovate corolla lobes; anthers with elliptic thecae with a minute, inconspicuous point at the apex of the connective versus arrow-head shaped anthers with oblong thecae with a conspicuous apiculate apex to the connective. Table 1 shows the distinguishing characters between the two species.

It has previously been confused with *Synsepalum muelleri* (Kupicha) T.D.Penn. but is easily separated by the very faint secondary venation and no visible tertiary venation versus clearly visible secondary and reticulate tertiary venation; no stipules versus persistent subulate stipules 2–7 mm long; whitish-green flowers with a very short corolla tube and wide-spreading lobes versus white tubular flowers with the tube markedly longer than the lobes; corollas less than 2.5 mm long versus 7–10 mm long; exerted stamens versus included stamens; minute staminodes versus no staminodes; fruit 1–1.3 cm long with a very short (0.5 mm long) style versus larger fruit 2–3 cm long with a 5–7 mm long persistent style; glabrous fruit except for hairs at the tip around the base of the style versus fruit covered with rust-coloured hairs.

Description. Small tree or shrub up to 4 m high. Bark brown and finely fissured. Branching repeatedly subterminal (“*Terminalia*-style”) with leaves confined to branch apices. Older stems glabrous with finely fissured brownish-grey bark, young shoots, buds and petioles of young leaves with indumentum of appressed, very fine rust-coloured hairs. Hairs medifixed, less than 0.5 mm long, tips sharp. Stipules absent. Leaves with petiole 3–5 mm long, often sparsely hairy to glabrous on older leaves; lamina narrowly elliptic to rarely oblanceolate, 7.9–12.6 x 1.7–3.4 cm, apex long acuminate with a narrow rounded tip, margins entire and repand, base attenuate; midrib raised on both surfaces with striations on the midrib below, lateral veins very faint above, more distinct below, pinnate, curving towards the margin, 9–15 pairs of lateral veins, no visible tertiary venation; both surfaces finely rugose and glabrous except for sparse scattered hairs along the midrib on the lower surface, particularly on younger leaves; hairs very fine, rust-coloured, medifixed, less than 0.5 mm long, tips sharp. Flowers in clusters in leaf axils and along the branches below the leaves, small and whitish-green, sessile or almost so, pedicels less than 1 mm long (extending to 2 mm long in fruit), pedicels and external surface of calyx lobes covered with sub-appressed, medifixed, very fine rust-coloured hairs. Calyx cup-shaped, 5-lobed, lobes nearly free, imbricate, elliptic, 1.2–1.3 x 1–1.1 mm, with hyaline margins, glabrous internally. Corolla 5-merous, fused at base, tube up to 0.8 mm long, lobes involute, broadly ovate, 1.45–1.5 mm long, rounded at apex. Stamens attached at base of petals, filaments 0.6 mm long,
Figure 1. *Synsepalum chimanimani* (A-K) and *Synsepalum kaessneri* (L) A habit B stem apex with apical buds/young leaves and petioles showing indumentum C medifixed hairs on stem D abaxial leaf surface showing sparse medifixed hairs on midrib E leaf showing (faint) secondary veins F flower cluster showing bud, open flower and partially opened flower G flower, side view (hydrated) H corolla after removal of two petals and stamens (hydrated) I stamen and staminodes in situ on petal, inner face bases of neighbouring petals shown J side view of stamen and petal (staminodes omitted) K immature fruit (from photograph) L leaf (abaxial) of *Synsepalum kaessneri*. A, D-K drawn from B.T. Wursten BW897 (BR00000020700003) B, C from Timberlake et al. 6197 (K001291035) L drawn from Magogo & Glover 280 (K). Scale bars: 1 mm (Single bar); 2 mm and 5 mm (graduated single bar); 1 cm (double bar); 5 cm (graduated double bar). Drawn by Andrew Brown, November 2018.
anthers 0.9–1 mm long, the two thecae elliptic with a tiny, inconspicuous point at the apex of the connective. Staminodes minute, alternating with the petals and stamens, divided and irregularly shaped. Ovary densely hairy, with a few hairs extending onto the style, ovoid, 1 mm long, style 0.5 mm long. Fruit fleshy, red when ripe, solitary, ellipsoid, 10–13 x 6–8 mm (measurements taken from dried material), with calyx and corolla persisting at base and with persistent style at apex, glabrous except for a few hairs at apex around base of style. Seed compressed-ellipsoid, 12 x 7 x 3 mm, glossy brown, with duller elliptic scar c. 5 mm wide extending the length of the seed, cotyledons large, plano-convex, endosperm absent (fide Kupicha 1983).

Distribution and ecology. Known only from lowland, moist forests in the foothills of the southern Chimanimani mountains of Mozambique and Zimbabwe. It has been recorded from three localities: the Haroni-Makurupini Forest in Zimbabwe, and the Maronga forest (Maronga Community) and Thekeza forest (Zomba Community) in Mozambique. It occurs in the understorey of moist evergreen and semi-deciduous forests at an altitude of 305–560 m. In the Maronga Community area at the base of the Chimanimani Mountains, where this species is locally frequent, most of the area is covered by moist evergreen forest. The dominant tree here is *Newtonia buchananii*
A new species of *Synsepalum* from Mozambique and Zimbabwe

A new species of *Synsepalum* from Mozambique and Zimbabwe

Phenology. Plants were collected in flower in July (buds) and October (open), and in fruit in October and December. Flowering occurs at the end of the dry season and beginning of the rainy season, the main rainy season in the Chimanimani area being from November to late March or April (Timberlake et al. 2016b).

Etymology. The specific epithet is taken from the Chimanimani mountains to which the species is confined.

Conservation status. *Synsepalum chimanimani* S.Rokni & I.Darbysh, sp. nov. has been assessed as Endangered under IUCN criterion B (EN B1ab(iii)+2ab(iii); Rokni et al. 2018, as *Synsepalum* sp. nov.). It is estimated to have an extent of occurrence (EOO) and area of occupancy (AOO) of only 16 km² and is known from fewer than five locations. Although part of its population is well protected within the core zone of the Chimanimani Trans-Frontier Conservation Area (TFCA), it is threatened by extensive destruction and degradation of its forest habitat within the buffer zone of the TFCA, particularly within the Maronga and Zomba communities of Mozambique (see Discussion for further information on threats in this area).

Specimens examined. MOZAMBIQUE. Manica Province: Magorogodo hills, Zomba Community, 19°54.467’S, 33°11.067’E, alt. c. 559 m, fl. and fr. 28 Octo-

Table 1. Diagnostic characters for separating *Synsepalum chimanimani* from *Synsepalum kaessneri*.

<table>
<thead>
<tr>
<th>Character</th>
<th>Synsepalum chimanimani</th>
<th>Synsepalum kaessneri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf shape</td>
<td>Narrowly elliptic to rarely oblanceolate</td>
<td>Oblanceolate</td>
</tr>
<tr>
<td>Leaf apex</td>
<td>long acuminate, tip narrow, rounded</td>
<td>short acuminate with a broad rounded tip</td>
</tr>
<tr>
<td>Leaf width (mm)</td>
<td>17–34</td>
<td>28–52</td>
</tr>
<tr>
<td>Leaf length (mm)</td>
<td>79–126</td>
<td>98–167</td>
</tr>
<tr>
<td>Leaf length: width ratio</td>
<td>3.1–5.83</td>
<td>2.7–4.14</td>
</tr>
<tr>
<td>Pedicel length (mm) – flowers</td>
<td>Flowers sessile or almost so – pedicel less than 1 mm long</td>
<td>Flowers stalked – pedicel 1–3 mm long</td>
</tr>
<tr>
<td>Pedicel length (mm) – fruit</td>
<td>2</td>
<td>3–5</td>
</tr>
<tr>
<td>Corolla lobes – shape</td>
<td>Broadly ovate</td>
<td>Ovate</td>
</tr>
<tr>
<td>Corolla lobes length (mm)</td>
<td>1.45–1.5</td>
<td>1.8–1.9</td>
</tr>
<tr>
<td>Corolla lobes length: width ratio</td>
<td>1–1.21</td>
<td>1.29–1.36</td>
</tr>
<tr>
<td>Corolla tube length (mm)</td>
<td>0.75–0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Corolla – total length (mm)</td>
<td>Less than 2.5 mm</td>
<td>c. 3 mm</td>
</tr>
<tr>
<td>Stamens</td>
<td>Anthers 0.9–1 mm long, thecae elliptic with a minute, inconspicuous point at the apex of the connective</td>
<td>Anthers 1.25 mm long, arrow-head shaped, thecae oblong with conspicuous apiculate apex to connective</td>
</tr>
</tbody>
</table>
ber 2013, Wursten BW897 (BR!, BR0000020700003); Survey Plot 3, Magorogodo hills, Zomba Community, alt. 548 m, st. 28 October 2013, Wursten BW887 (BR!); Sussundenga Dist., Maronga community, base of Chimanimani Mountains, Forest plot 002, 19°58.417’S, 33°5.233’E, alt. 341 m, st. 14 November 2015, Timberlake et al. 6196 (LMA!); Sussundenga Dist., Maronga community at base of Chimanimani Mountains, 19°58.928’S, 33°4.948’E, alt. 330 m, st. 17 November 2015, Timberlake et al. 6197 (K!, K001291034; LMA!); Sussundenga Dist., Chimanimani foothills, Zomba community, Thekeza Forest, 19°54.717’S, 33°11.433’E, alt. 386 m, st. 30 June 2015, Cheek 17963 (K!, K001291036); Sussundenga Dist., Chimanimani foothills, Zomba community, Last House Thekeza, 19°54.533’S, 33°11.303’E, alt. 542 m, fl. buds 2 July 2015, Cheek 18027 (K!, K001291037); Southern tip Chimanimani Mts. near Haroni-Makurupini Forest, alt. +/- 1000 ft [c. 305 m], st. 28 May 1969, Müller 1085 (SRGH!).

ZIMBABWE. Manicaland Province: Chimanimani District, Haroni/Makurupini Forest, alt. 1300 ft [396 m], fr. 4 December 1964, Wild, Goldsmith & Müller 6645 (K!, K001291026; BR!, BR0000020184520; SRGH!); Chimanimani District, Makurupini-Haroni Forest, st. 22 April 1973, Mavi 1437 (K!, K001291028; SRGH!).

Type. KENYA. Kwale County: Makoni near Mombasa, fl. 20 March 1902, *T. Kässner 398* (B, holotype, destroyed; BM!, isotype, BM000925429; K!, isotype, K000430647).

Specimens examined. KENYA. Kwale County: Makoni near Mombasa, fl. 20 March 1902, *Kässner 398* (B, holotype, destroyed; BM!, isotype, BM000925429; K!, isotype, K000430647); Shimba Hills, Makadara Forest, Kwale Area, alt. 320 m [1050 ft], fr. 6 May 1968, Magogo & Glover 1017 (K!); Shimba Hills, Shimba Forest area near Kwale, alt. 381 m [1250 ft], fl. 15 March 1968, Magogo & Glover 280 (K!; BR!, BR0000020184513). Kilifi County: Mangea, Top forest, 3°16.000’S, 39°43.000’E, alt. 500 m, fr. 9 Jan 1992, Robertson 6563 (K!; US!, 02704855; MO, EA). TANZANIA. Tanga Region: East Usambara Mountains, Kwamgumi Plot 4, 4°56.000’S, 38°43.000’E, alt. 300 m, st. 23 July 2001, Luke et al. 7510 (K!, EA). Morogoro Region: Kimboza Forest Reserve c. 48–50 km Morogoro to Matombo Road, alt. c. 300–350 m, st. 9–17 July 1983, Rodgers, Hall and Mwasumbi WAR 2609 (K!, DSM); Mkungwe Catchment Forest Reserve, slopes NW of the ridge, alt. 775 m, fr. 25 Jan 2001, Jannerup & Mhoro...
A new species of Synsepalum from Mozambique and Zimbabwe

Aubréville (1972) also cites a specimen from Gabon collected in December 1971: ‘A. Hladik 1878, Ile de l’éléphant, Makokou, petit arbre, forêt partiellement inondable. Fruit rouge vermillon mangé par les chimpanzés.’ No herbarium is cited, and we have not seen this specimen. From the illustration and description, this specimen seems to have fruit with a definite point to the apex and a persistent style longer than 1 mm, and longer petioles (1.5–2.5 cm versus less than 1 cm long) and the flowers are also slightly larger than S. kaessneri at 3.75 mm in total length. This is very likely to represent a different species and is excluded here. S. kaessneri is not listed in the recent Gabon checklist (Sosef et al. 2006).

Habitat and ecology. Moist evergreen and dry semi-deciduous forests. Altitude 300–1100 m.

Phenology. Flowering September & March. Fruiting January & May.

Type. MALAWI. Southern Region: Mulanje District, Ruo Gorge, alt. 900 m, fl. and fr. 1 September 1970, *T. Müller 1463* (K!, holotype, K000049396; SRGH, isotype).

Specimens examined. MALAWI. Southern Region: Mulanje Mountains, Ruo Gorge at the Savani stream crossing, alt. 1250 m, fl. 30 September 1986, *Chapman & Chapman 8104* (K!, K000049398; E!, E00330780; MO); Mulanje Mountains, Lichenya Plateau, along the perimeter fire trace near the crater lip, alt. 1920 m, fr. 12 November 1986, *Chapman & Chapman 8209* (K!, K000049399; E!, E00330776; MO); Mulanje Mountains, Chisongeli Forest, Muluzi catchment, alt. 1650 m, fl. 30 September 1988, *Chapman & Chapman 9339* (K!, K000049397; E!, E00330775; MO); Mulanje, Ruo Gorge, fl. and fr. 26 August 1983, *Dowsett-Lemaire 942* (K!, K000049400; BR!, BR0000019420677); Mulanje District, Ruo Gorge, alt. 900 m, fl. and fr. 1 September 1970, *Müller 1463* (K!, holotype, K000049396; SRGH, isotype; P); Mulanje Plateau, st. 24 September 1929, *Burtt Davy 22131* (BR!, BR0000019420684; FHO).

MOZAMBIQUE. Nampula Province: Ribáuè, Serra de Mepálùè, alt. c. 1600 m, fr. 9 December 1967, *Torre & Correia 16403* (LISC!, paratype, LISC002849; COI; WAG!, paratype, WAG.1530185); Ribáuè, serra de Ribáuè (Mepálùè), alt. c. 1500 m, fr. 28 January 1964, *Torre & Paiva 10301* (K!, K001236782; LISC!, paratype, LISC002850; LMU). Zambézia Province: Encosta da serra do Gúruè, via fábrica Junqueiro a Oeste dos Picos Namuli, confluência dos rios Malema e Cocossi, alt. c. 1650 m, fl. and fr. (immature) 6 November 1967, *Torre & Correia 15921* (LISC!, paratype, LISC002848); Mt Namuli, Uivelo area, Manho forest, E Namuli, 15°24.683’S, 37°2.267’E, alt. 1590
Figure 3. Geographical distribution map of *S. chimanimani*, *S. kaessneri*, and *S. muelleri*. Circles – *S. chimanimani*; triangles – *S. muelleri*; stars – *S. kaessneri*.

Habitat and ecology. In the understorey of *Newtonia buchananii*-dominated moist forest, *Garcinia kingaensis* Engl. dominated moist forest and dense humid riverine forest at elevations of 900–1920 m.
Phenology. Flowering August to November. Fruiting August to January. There is a distinct rainy season in Mabu, Namuli, Ribáuè, Chiperone and Mulanje with the main rainfall months being November to April with a dry season from May to October. Flowering occurs at the end of the dry season and beginning of the rainy season with fruiting following.

Discussion

Taxonomy and conservation

We have only one flowering specimen of *S. chimanimani* sp. nov. and it has rarely been collected in fruit. It would be useful to have more flowering specimens for a more thorough comparison with *S. kaessneri*, which may reveal additional diagnostic characters. However, the two taxa are very clearly separated geographically by nearly 1,500 km and there are sufficient morphological differences for separation at the species level. A molecular phylogenetic study that includes the three taxa in this paper would also be useful to better understand relationships within *Synsepalum* and between *S. chimanimani*, and *S. kaessneri*, and *S. muelleri*. Whilst the molecular study by Borg et al. (2019) did not sample any of these species, it did include the type species of *Afrosersalisia*, *A. afzelii* (Engl.) A.Chev. (=*S. afzelii* (Engl.) T.D.Penn.) and one representative of *Vincentella*, *V. passargei* (Engl.) Aubrév. (=*S. passargei* (Engl.) T.D.Penn.), the segregate genus in which *S. muelleri* has previously been placed. They found that the clade containing *Afrosersalisia* is not closely related to the clades containing *Vincentella* or *Synsepalum sensu stricto*. This may support the morphological evidence that *S. chimanimani* and *S. muelleri* are not closely allied. However, it should be noted that *S. muelleri* (corolla lobes much shorter than tube) has a very different corolla morphology to *S. passargei* (corolla lobes much longer than tube; Kupicha 1983) and so the relationship between those species also requires confirmation.

Both *S. chimanimani* sp. nov. and *S. kaessneri* are rare species with restricted ranges and of conservation concern because of ongoing threats to the known populations. There are no known *ex situ* collections of either species (BGCI 2019) and it would be desirable to collect seeds for both banking and growing in botanic gardens.

The botanical importance of the Chimanimani foothills: an Important Plant Area

The high Chimanimani Mountains have long been renowned for their high botanical endemism, particularly associated with the extensive outcrops of nutrient-deficient quartzites (Wild 1964; van Wyk and Smith 2001; Timberlake et al. 2016b; Wursten et al. 2017; Cheek et al. 2018). Much less well known is the botanical importance of the low elevation foothills of these mountains (c. 300–1200 m elevation, mainly below 1000 m), particularly to the south and east of the massif. This area has extensive stands of low altitude moist evergreen and semi-deciduous forest that, whilst now
much fragmented, still represent the largest extent of this highly threatened habitat type in Mozambique.

The area of particular interest stretches from the lower valleys of the Rusitu and Haroni Rivers of Zimbabwe, the Makurupini area on the Zimbabwe-Mozambique border and the Maronga, Zomba and Mpunga communities of Mozambique. The botanical diversity of the Haroni-Rusitu-Makurupini region has been documented in an unpublished checklist of 787 species, compiled from a range of expeditions made between 1955 and 1998 (Timberlake 1999). Recent survey and inventory work in the Mozambican portion of this area, excluding Makurupini, documented 532 plant species (Timberlake et al. 2016a).

The forests vary in species composition and in the relative extent of evergreen versus deciduous components; the species composition in the Mozambican portion of these forests is discussed in detail by Timberlake et al. (2016a). Of particular interest botanically are the mostly evergreen forests and riverine fringes of Haroni-Makurupini, Maronga and the southwestern-most part of Zomba (Thekeza Forest). Amongst the dominant trees, these areas support what is potentially the largest population globally of *Maranthes goetzeniana* (Engl.) Prance. This species is often locally dominant in Maronga and also extends to Thekeza (Timberlake et al. 2016a).

Although of relatively low species richness compared to lowland forests in other parts of tropical Africa, the Chimanimani forests support a number of rare and threatened plant species. For example, the spectacular herb *Streptocarpus acicularis* I.Darbysh. & Massingue is so far known only from a single collection from along the Mevumozi River near Maronga (Darbyshire and Massingue 2014). *Vepris drummondii* Mendonça is largely restricted to the Haroni-Makurupini-Maronga forests except for an outlier population on nearby Mt Pene in Zimbabwe; it was encountered at low abundance in forests at Maronga in 2015 (I.D., pers. obs.). There is also a population of the globally Endangered wild coffee *Coffea salvatrix* Swynn. & Phillipson, or “mukofi” coffee, in the Maraumi Forest of Zomba and this species may occur more widely in this forest belt. Other range-restricted forest species include *Afrocanthium ngonii* (Bridson) Lantz and *Englerina swynnertonii* (Sprague) Polhill & Wiens.

These forests also support species that are nationally rare for Zimbabwe and/or Mozambique, including some interesting outlier populations. For example, *Ficus mucuso* Welw. ex Ficalho and *Raphidiocystis chrysocoma* (Schumach.) C.Jeffrey, West African species that are known in the Flora Zambesiaca region only from these forests, and *Dianella ensifolia* (L.) DC., a species of horticultural importance with an Indian Ocean distribution, on the African continent known in the wild only from the Chimanimani, Mabu and Ribáuè mountains of Mozambique. It is locally frequent at Maronga (Timberlake et al. 2016a). Also of interest is a dwarf, small-leaved species of *Podocarpus* (Podocarpaceae) that grows frequently along the rocky margins of forest rivers and streams at low elevations and also extending up into the higher mountains. This species has previously been placed within one of the two South African species *P. elongatus* (Aiton) L’Hér. ex Pers. (Farjon 2017) or *P. latifolius* (Thunb.) R.Br. ex Mirb. (Burrows et al. 2018) but it is quite possibly a distinct taxon – further taxonomic and molecular phylogenetic studies are required to confirm its placement. It is apparently also known
from the Mafinga Mountains of Northeast Zambia which are also partially quartzitic (J. Timberlake, pers. comm.).

The forests are interspersed with extensive areas of miombo woodland, dominated by *Brachystegia* (most frequently *B. spiciformis* Benth.) and *Uapaca* species. Whilst important ecologically, the miombo does not contain high numbers of rare or threatened plant species. Of greater botanical significance is the presence of three other vegetation types within this mosaic:

1. Low elevation outcrops of nutrient-deficient quartzites, usually associated with light woodland dominated by *Brachystegia microphylla* Harms. These outcrops are most frequent in the Makurupini-Maronga area but also extend further east. They support an interesting rock flora including the endemic *Ficus muelleriana* C.C.Berg, a tiny fig that climbs on the rock faces, and *Otiophora lanceolata* Verdc., a locally abundant endemic shrublet. *Aloe ballii* Reynolds, including its two varieties var. *ballii* and var. *makurupiniensis* Ellert (both Vulnerable), is a delicate grass aloe restricted to quartzite slopes along the Zimbabwe-Mozambique border. Other range-restricted and/or scarce species of this habitat include *Sclerochiton coerulescens* (Lindau) S.Moore, *Gutenbergia westii* (Wild) Wild & G.V.Pope and *Sericanthe chimanimaniensis* Wursten & de Block ined. (see Burrows et al. 2018). Where quartzite outcrops along rivers and streams, the endemic grass *Danthoniopsis chimanimaniensis* (J.B.Phipps) Clayton can be locally frequent.

2. Seasonally wet grasslands, which occur in small scattered areas within the forest-woodland mosaic. These support an interesting, though not diverse, herb flora including the recently resurrected species *Crepidorhopalon flavus* (S.Moore) I.Darbysh. & Eb.Fisch. whose range is centred on the southern Chimanimani foothills (Darbyshire et al. 2019), and *Mesanthemum africanum* Moldenke, a Chimanimani endemic mainly found in the high mountains but which occurs at much lower abundance in these lowland wet grasslands (Timberlake et al. 2016a).

3. Swamps and lowland watercourses that are fringed by large stands of the striking tree *Pandanus livingstonianus* Rendle. Whilst fairly widespread, this tree has very isolated and localised populations and is thought to be threatened by habitat loss (Beentje 2009). The Zomba Centro Swamp is particularly important for this species.

The entirety of this area falls within the Chimanimani Trans-Frontier Conservation Area (TFCA), in part within the core TFCA, i.e. the Chimanimani National Park of Zimbabwe and Chimanimani National Reserve of Mozambique, and in part within the TFCA buffer zone. This buffer zone includes the Maronga, Zomba and Moribane Forest Reserves in Mozambique (see Müller et al. 2005). Lowland habitats within the core TFCA are largely intact, with only small areas of human encroachment at present. However, threats are severe within the buffer zone including within the Forest Reserves. Large areas of forest have either been cleared or degraded for subsistence agriculture, using fire to clear the undergrowth once the large trees have been felled. Excessive burning prevents forest regrowth and impacts other key habitats. Regular burning also encourages the continuing spread of the invasive South
American shrub *Vernonanthura polyanthes* (Spreng.) A.J. Vega & Dematt. (syn. *V. phosphorica* (Vell.) H.Rob.; see Timberlake et al. 2016a; Sukhorukov et al. 2017) and this species is now mono-dominant over many hectares of disturbed, former forest habitats in the Chimanimani foothills, out-competing native species and preventing regeneration of natural habitats and encroaching into forest margins (Timberlake et al. 2016a). A further threat is the impact of mining for gold along some of the major rivers that flow from the massif, which pollutes the watercourses and denudes vegetation along their margins, as is clearly visible on satellite imagery on Google Earth. Conservation action is urgently needed in the TFCA buffer zone. Ongoing work with communities to attempt to better balance livelihoods with biodiversity conservation is ongoing, led by the Micaia Foundation (http://www.micaia.org), and this has led to the establishment of community conservation areas in the Maronga, Zomba and Mpunga communities of Mozambique (Timberlake et al. 2016a). However, there is still much work to be done to secure the future of the biodiversity within the TFCA buffer zone.

Applying the Important Plant Areas (IPA) criteria as revised by Darbyshire et al. (2017), the Chimanimani foothills qualify as an IPA under criterion A – presence of threatened species – with 17 criterion A taxa, of which 12 currently meet the threshold

Table 2. Taxa that qualify the Chimanimani foothills as an Important Plant Area under criterion A: threatened species.

<table>
<thead>
<tr>
<th>Family</th>
<th>Taxon</th>
<th>IUCN Red List assessment</th>
<th>IPA sub-criteria met</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphodelaceae</td>
<td>Aloe ballii Reynolds</td>
<td>VU D2</td>
<td>A(i)</td>
<td>Two varieties, var. ballii and var. makurupiniensis</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Gutenbergia westii (Wild) Wild & G.V.Pope</td>
<td>VU B1ab(iii)+2ab(iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Cyanotis chimanimanensis Faden ined.</td>
<td>Not Evaluated</td>
<td>A(iv)</td>
<td>Species currently under description</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Tephrosia longipes Meisn. var. suynnertionii (Baker f.) Brummitt</td>
<td>Not Evaluated</td>
<td>A(iv)</td>
<td></td>
</tr>
<tr>
<td>Gesneriaceae</td>
<td>Streptocarpus acicularis I.Darbysh. & Massingue</td>
<td>CR B2ab(iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td>Loranthaceae</td>
<td>Englerina suynnertionii (Sprague) Polhill & Wiens</td>
<td>Not Evaluated</td>
<td>A(iii)</td>
<td></td>
</tr>
<tr>
<td>Moraceae</td>
<td>Ficus muelleriana C.C.Berg.</td>
<td>EN B1ab(iii)+2ab(iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td>Phyllanthaceae</td>
<td>Phyllanthus bernieriatus Baill. ex Müll. Arg. var. glaber Radcl.-Sm.</td>
<td>Not Evaluated</td>
<td>A(iv)</td>
<td></td>
</tr>
<tr>
<td>Poaceae</td>
<td>Danthoniopsis chimanimanensis (J.B.Phipps) Clayton</td>
<td>EN B1ab(iii)+2ab(iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Afrocanthium ngoni (Bridson) Lantz</td>
<td>VU B1ab(iii)+2ab(iii)*</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffeea scarzeggii Swynn. & Phillipson</td>
<td>EN B2ab(ii,i,iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Olsophora lanceolata Verdc.</td>
<td>VU B1ab(iii)+2ab(iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serianthes chimanimanensis Wursten & De Block ined.</td>
<td>VU B1ab(iii)+2ab(iii)*</td>
<td>A(i)</td>
<td>Species currently under description</td>
</tr>
<tr>
<td>Rutaceae</td>
<td>Vépris drummondii Mendonca</td>
<td>VU B1ab(iii)+2ab(iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td>Sapotaceae</td>
<td>Synopetalum chimanimanensis S.Rokni & I.Darbysh.</td>
<td>EN B1ab(iii)+2ab(iii)</td>
<td>A(i)</td>
<td></td>
</tr>
<tr>
<td>Zamiaceae</td>
<td>Eucaphalurus chimanimanensis R.A.Dyer & I.Verd.</td>
<td>EN B1ab(i,ii,iv)+2ab(i,ii,iv); C1</td>
<td>A(i) – see note</td>
<td>Requires confirmation that this species is still extant within proposed IPA</td>
</tr>
</tbody>
</table>

* publication pending
for criterion A(i) – presence of globally threatened species (see Table 2). This site will also qualify under IPA criteria B(ii) – exceptional number of species of high conservation importance, and C(iii) – presence of nationally threatened or range restricted habitat, due to the large extent of threatened lowland moist forest. The lowland forest and the high massif are combined together in the two Important Bird and Biodiversity Areas for Chimanimani, which are divided along the international boundary (BirdLife International 2019a, 2019b). However, in botanical terms, the species assemblages are markedly different between the Chimanimani foothills and the high massif (albeit with a mid-elevation transition zone) and the threats and conservation issues that the two areas face are also markedly different. With this in mind, we consider it most useful to recognise the Chimanimani foothills as an IPA in their own right, with the high massif recognised as a separate IPA. In doing so, this also helps to draw more attention to the importance of the Chimanimani foothills as a site of global importance for biodiversity and in urgent need of conservation action.

Acknowledgements

Fieldwork conducted in the foothills of the Chimanimani Mountains in 2015 was sponsored by the Darwin Initiative award 2380: “Balancing Conservation and Livelihoods in the Chimanimani Forest Belt, Mozambique” completed in 2017. We thank Andrew Brown for the illustration of the new species. We thank Ranee Prakesh (BM) and Clayton Langa (LMA) for providing access to the relevant herbarium specimens at their institutions, Anthony Mapaura and Kudakwashe B. Mutasa (SRGH) for the herbarium specimen images, and Ann Bogaerts (BR) for the loan of the type specimen. Thanks also to Jo Osborne for her comments on an earlier draft of the manuscript and to John Burrows, Terry Pennington and Jonathan Timberlake for their helpful review comments.

References

Supplementary material 1

Examined characters of *S. kaessneri* and the newly described species
Authors: Saba Rokni, Bart Wursten, Iain Darbyshire
Data type: species data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/phytokeys.133.38694.suppl1