The rise of Cynometra (Leguminosae) and the fall of Maniltoa: a generic re-circumscription and the addition of 4 new species

Aleksandar Radosavljevic1,2,3

1 Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022, USA
2 National Museum of Natural History, Smithsonian Institution, 10th St and Constitution Ave NW, Washington, D. C. 20560, USA
3 Northwestern University, 633 Clark St, Evanston, Illinois 60202, USA

Corresponding author: Aleksandar Radosavljevic (aleks.rado@u.northwestern.edu)

Abstract

Cynometra L. is a genus of ca. 85 species of shrubs to large trees. It is amongst the largest genera in the legume subfamily Detarioideae and one of the few with a pantropical distribution. Perhaps due to this wide distribution and high diversity, systematists and taxonomists have struggled with the classification of Cynometra and its close ally, the genus Maniltoa Scheff. Recent phylogenetic studies have shown that many of the African species are more closely related to other genera and that the genus Maniltoa is nested within a clade of Indo-Pacific Cynometra. Here, I present an emended circumscription of Cynometra that excludes the African species defined by jointed pedicels and dehiscent fruits and includes the species formerly recognised in Maniltoa. New combinations in Cynometra are also provided for those species that require them. Additionally, four new species of Neotropical Cynometra are described and illustrated: \textit{Cynometra cerebriformis} sp. nov. from the lower Rio Trombetas in Brazil; \textit{Cynometra dwyerii} sp. nov. from the Darien gap region of Panama; \textit{C. tumbesiana} sp. nov. from the dry tropical forests of Ecuador and Peru; and \textit{C. steyermarkii} sp. nov. from the foothills of the western Cordillera de la Costa in Venezuela.

Keywords

Cynometra L., Detarioideae, Leguminosae, Maniltoa Scheff, new species, taxonomy
Introduction

The genus *Cynometra* L. (Leguminosae) has a broad tropical distribution, is relatively species rich and many of its species are poorly represented in herbaria. The approximately 85 species of trees and (some) shrubs in the genus are spread somewhat evenly amongst four regions (Figure 1): the Neotropics (from southern Mexico and the Caribbean to northern Argentina; Dwyer 1958, Sprada Tavares and da Silva 1992), mainland tropical Africa (equatorial forest belt; Léonard 1951), Madagascar and the Comoros Islands (Du Puy et al. 2002) and the Indo-Pacific (extending from the Western Ghats eastward to Fiji; Knaap-van Meeuwen 1970, Smith 1985). Perhaps unsurprisingly, the genus has long troubled taxonomists and systematists who have struggled with its diversity in several attempts to revise and classify regional groupings of the species (Léonard 1951, Dwyer 1958, Knaap-van Meeuwen 1970). Further, its relationship to the much smaller Pacific genus *Maniltoa* Scheff. has remained equivocal. Several important phylogenetic studies of the Caesalpinioideae sensu lato suggested that *Cynometra* was not monophyletic (Bruneau et al. 2001, 2008). More recent studies, with greater taxonomic sampling, have provided additional evidence that the genus is polyphyletic and, furthermore, that one of the lineages is paraphyletic with respect to *Maniltoa* (Mackinder et al. 2013, Radosavljevic et al. 2017, de la Estrella et al. 2018). In order for the classification of *Cynometra* to reflect a monophyletic taxon, a new genus circumscription must be provided and *Maniltoa* should be subsumed into *Cynometra*. In addition, during the course of herbarium study and fieldwork, several undescribed species were revealed. Those species are here described. This paper is divided into three parts: I. A new circumscription of the genus *Cynometra*; II. The transfer of all species of *Maniltoa* into *Cynometra*; and III. Description of four new species of *Cynometra*.

Materials and methods

The following herbaria allowed the author to study their collections in person or provided loans: A, ATH, BM, BRI, CANB, F, IAN, INPA, K, MG, MO, NY, P, RB, SING and US. Morphological characters were assessed and measured from herbarium material. Flowers and immature fruit were rehydrated in warm Pohl’s solution (Pohl 1965) prior to dissection and measurement. Other characters were measured directly from the herbarium specimens. For the new species from Ecuador, flower colour, habit and habitat information were taken from label data and field observations by Gwilym Lewis and Bente Klitgaard (pers. comm.); for the other three species, these features were described from label data. Reproductive status is indicated with the following abbreviations (alone or in combination): fl, flowering; fr, fruiting; im, immature; st, sterile. Illustrations were made at the National Museum of Natural History, Washington DC, USA by Mattias S. Lanas (*Cynometra steyermarkii*), Katherine Rudebusch (*C. tumbesiana*) and Alice Tangerini (*C. cerebriformis* and
The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

C. dwyerii) from herbarium specimens. Two of the new species are described based on a single collection: in both cases, the taxa are morphologically and geographically distinct and, after extensive herbarium study, the author is confident that the available material, while limited, is sufficient to distinguish two new entities at the species level.
Part I: A new circumscription of the genus

Linnaeus established the genus *Cynometra* and included two species from southeast Asia in the first edition of Species Plantarum, *Cynometra cauliflora* L. and *C. ramiflora* L. (Linnaeus, 1753). This original concept of *Cynometra* was of a genus distinguished by compound leaves, four reflexed sepals, five equal petals and by single-seeded, indehiscent pods with thick and tuberculate valves (Linnaeus’ description does not explicitly mention ‘indehiscent pods’, but it is a character present in both of his original species). For nearly the next century, this circumscription was generally followed by taxonomists around the world. The limits of the genus were first expanded by the publication of two new species from the Indo-Pacific region: *Cynometra polyandra* Roxb., described in 1820 from Indian material and *Cynometra grandiflora* A.Gray, described in 1854 from Fijian specimens. These species differed most notably from the traditional understanding of *Cynometra* by having more numerous stamens (35–40 in *C. grandiflora* and approximately 50 in *C. polyandra*; Roxburgh 1820, Gray 1854). Bentham (1865a) later described the African species *C. floribunda* Benth. and *C. laxiflora* Benth., species with large, petaloid bracteoles and only two showy petals which he placed in a new subgenus, *Hymenostegia* (the fruit of the two species also differs from *Cynometra*, but these were unknown at the time). Scheffer (1876) established the segregate genus *Maniltoa* after viewing collections from New Guinea; believing the material to be conspecific, he included a single species, *Maniltoa grandiflora* (A.Gray) Scheff. (based on *Cynometra grandiflora* A.Gray). While the most apparent difference between the new genus *Maniltoa* and typical *Cynometra* was the number of stamens, Scheffer (1876) argued that the genus was distinct based on the size of the flowers, the number of seeds, caducous filiform stipules, the presence of a tendril terminating the leaf rachis and bracts subtending each pedicel in the inflorescence. He does not include or reference *C. polyandra*, another polyandrous species. *Maniltoa* was not universally accepted at first and Taubert’s (1894) treatment of the Leguminosae for Engler’s Die Natürlichen Pflanzenfamilien treated *Maniltoa* as a section of *Cynometra* (along with the sections *Eucynometra*, *Hymenostegia* and *Pseudocynometra*). A few years later, however, Harms (1897) broke apart this broad concept of *Cynometra*. He elevated *Hymenostegia* to the rank of genus and restored *Maniltoa* by combining it with section *Pseudocynometra* (consisting of a single species, *C. polyandra*) on the basis of greater stamen number and the presence of prominent buds enclosed in imbricate scarious bract scales (Harms 1897, 1902, 1919). This understanding of *Cynometra* and *Maniltoa* in the Indo-Pacific was further refined by Knaap-Van Meeuwen (1970) who sought to better define the limits between the two genera – she again placed greatest significance on the stamen number, placing those with 8–13 stamens in *Cynometra* and those with 15–80 in *Maniltoa*. While many authors have followed this delimitation (Verdcourt 1979; Hou et al. 1996), some have continued to question the distinction of the two genera (Soerianegara 1993; Pan et al. 2010).
The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

In Africa, misunderstanding of the delimitation of *Cynometra* persisted, even after Harm's (1897) treatment and the turn of the century marked the beginning of a period of rapid taxonomic expansion in both the number of species and, consequently, the characters describing the generic limits of *Cynometra*. As explained (in great detail) by Léonard (1951), the first few species described in Africa generally matched the Linnaean concept (e.g. *Cynometra vogelii* Hook.f. in 1849 from Nigeria; *C. mannii* Oliv. in 1871 from Cameroon). However, with the description of *Cynometra sessiliflora* Harms, Harms (1899) expanded the understanding of *Cynometra* to include species with five erect sepals (instead of four reflexed sepals) and, most importantly for the continued confusion regarding the genus, dehiscent pods with thin, flat valves. Not long after, the publication of *Cynometra alexandri* C.H.Wright, *C. gilletii* De Wild., *C. laurentii* De Wild., *C. lujae* De Wild., *C. oddonii* De Wild. and *C. pedicellata* De Wild. added more species with five sepals and dehiscent fruits and further expanded the genus to include species with an intrastaminal disc and numerous ovules (Wright 1902; De Wildeman 1904, 1905, 1906, 1907). Harms (1907) also continued to expand the generic conception of *Cynometra* in Africa to include species with alternate leaflets, distichous flowers and a stipe fused with the receptacle wall when he described *C. leptantha* Harms, *C. multijuga* Harms and *C. pierreana* Harms. *Cynometra brachyura* Harms, expanded the genus to again include species with only two petals (Harms 1913). As a result, species with all manner of combinations of these characters were placed in *Cynometra* (see Baker 1930 and Pellegrin 1949). While many taxonomists, working in Africa, noted the heterogeneity of the genus, it was not until Léonard undertook a thorough and careful revision of the African species that a coherent circumscription of *Cynometra* began to emerge (Baker 1930; Lebrun 1933; Aubréville 1936; Léonard 1951, 1957).

Léonard’s work (1951, 1957) was a major advancement in revising the boundaries of *Cynometra* and its allies in Africa, which had become so broad as to make genera nearly indistinguishable. Léonard (1951) removed from *Cynometra* any taxa with the stipe of the ovary adnate to the hypanthium or eccentrically inserted (species with a free, central stipe but alternate leaflets with translucent dots were moved to *Gilletiodendron* Vermoesen). To accommodate his revised concept of the genus, Léonard (1951, 1957) described a new genus, *Lebruniodendron* J.Léonard, resurrected the genera *Gilletiodendron* Vermoesen and *Zenkerella* Taub. and transferred numerous species out of *Cynometra* and into the genera *Hymenostegia* (Benth.) Harms, *Plagiosiphon* Harms, *Schotia* Jacq. and *Scorodophloeus* Harms. He placed the remaining *Cynometra* into three informal groups; they share a centrally inserted stipe, opposite leaflets, five equal petals and imbricate sepals, but differ notably in characters such as inflorescence structure, presence or absence of a staminal disc, presence or absence of foliar glands and fruit shape and dehiscence. Léonard (1951) acknowledged that the genus remained heterogeneous – the species of ‘group one’ resembled ‘typical *Cynometra*’, but the others were possibly misplaced. Later, he further assessed the genera of African Amherstieae and Cynometreae, revising the tribal and generic limits using characters from germination
mode, seedling architecture and wood structure, amongst others. (Léonard 1957). A thorough examination of the genus *Cynometra*, unfortunately, was not included in that otherwise exhaustive study. Léonard and others recognised that, as contemporarily circumscribed, the genus was likely polyphyletic and would require further revisionary studies at a global scale (Aubréville 1968, 1970; Breteler 1996; Léonard 1996).

An early morphological cladistic analysis by Temu (1990) provided the first phylogenetic evidence for the non-monophyly of African *Cynometra*. The results showed two distinct clades of *Cynometra* in tropical Africa, one of which included *Maniltoa*. Later morphological and molecular phylogenetic analyses, albeit with limited sampling of *Cynometra* and *Maniltoa*, also found no evidence to support monophyly of *Cynometra* and suggested that it may be paraphyletic with respect to *Maniltoa* (Bruneau et al. 2001, 2008). More recent studies which included a greater taxon sampling from *Cynometra* and *Maniltoa* have found support for two clades of *Cynometra*, one consisting of exclusively East African species and the other containing species from the rest of the genus plus *Maniltoa* (Mackinder et al. 2013; Radosavljevic et al. 2017; de la Estrella et al. 2018). Radosavljevic et al. (2017), which featured 47 accessions from 36 species of *Cynometra* and *Maniltoa*, recovered two strongly supported clades of *Cynometra* sensu lato, which are each diagnosed by several morphological characters (Figure 1). One clade (*Cynometra* clade A of Radosavljevic et al. 2017) is comprised of exclusively east African species and is grouped as sister to a clade composed of *Dicymbe* Spruce ex Benth. and *Polystemonanthus* Harms with strong support. The other clade, which includes the type species *Cynometra cauliflora* L., contains *Cynometra* species from the Neotropics, the remaining Afrotropical species and the Indo-Pacific species (*Cynometra* clade B of Radosavljevic et al. 2017). *Maniltoa* is nested within clade B and is also recovered as non-monophyletic. This clade of *Cynometra* and *Maniltoa* is placed in a clade with *Zenkerella* Taub., *Normandiodendron* J. Léonard and the *Scorodophloeus* clade, again with strong support. The species of *Cynometra* clade A are characterised by the absence of foliar extra-floral nectaries, paniculate inflorescences (with two exceptions), articulated pedicels, a well-developed intrastaminal disc, 2–4 ovules and dehiscent fruit. *Cynometra* clade B is characterised by the presence of foliar extra-floral nectaries (in most species), racemose inflorescences, simple pedicels, the absence of an intrastaminal disc, 1–2 ovules and indehiscent fruit. The species of *Cynometra* clade A correspond to Léonard’s (1951) groups 2 and 3 while *Cynometra* clade B, which contains the generitype *Cynometra cauliflora* L., corresponds to group 1. Léonard (1951, 1996) predicted as much; he referred to group 1 as ‘typical *Cynometra*’ and believed that *Cynometra alexandri* and *C. hankei* Harms were likely misplaced. De la Estrella et al. (2018), who sampled broadly across Detarioideae, placed *Cynometra* and *Maniltoa* in a re-circumscribed Amherstieae.

To reconcile the discrepancy between the current classification of *Cynometra* and *Maniltoa* and our understanding of their evolutionary relationships, I present here an emended generic circumscription of *Cynometra* that excludes the species of *Cynometra* clade A and includes the species formerly placed in *Maniltoa*. A treatment that proposes a new genus for the species of *Cynometra* clade A is in preparation.
Taxonomic treatment

Trees or shrubs (infrequent), evergreen (rarely deciduous), buttressed or not, growth flush-wise, new growth flaccid and whitish or reddish at emergence, becoming green with maturity, vegetative buds covered in a series of imbricate scales. Stipules lateral, free, linear or filamentous, early caducous, scars typically not visible on mature growth. Leaves pulvinate, petiolate, rachis (if present) terete or canaliculate, often terminating in a filiform outgrowth, axes glabrous or pubescent, paripinnate with 1–16 pairs of opposite leaflets (rarely unifoliolate); leaflets petiolulate but sometimes appearing sessile because of decurrent lamina, blade lanceolate, ovate, elliptic, oblong, obovate, oblan- ceolate or trapeziform, symmetrical to strongly asymmetrical, glabrous or sparsely pubescent abaxially, glabrous adaxially (rarely with sparse pubescence along midvein), margins entire, apex broadly obtuse to acuminate, retuse or emarginate, mucronate, base oblique, distal margin decurrent to petiolule; laminar nectaries usually present, abaxial, submarginal, embedded in laminar surface, shallow, without noticeably raised edges. Inflorescences axillary or ramiflorous (rarely calyxflorous), racemose, 1–2(–3), per axil, buds enclosed by imbricate bracts, appearing conical, ovoid or cigar-shaped in silhouette; pedicels simple (not articulated), filamentous in anthesis, accrescent and lignified in fruit; bracts enclosing inflorescence during development prior to emergence, imbricate, distichous, deciduous or persistent; bracteoles not enclosing buds, paired, inserted along proximal half of pedicel, opposite or subopposite, caducous. Flowers bisexual, actinomorphic; hypanthium present (sometimes indistinct), either turbinate-campanulate and short or tubular and partially to completely enveloping ovary; disc absent; sepals (3–)4–5, reflexed at anthesis, unequal, deltoid, ovate, ellipitic or oblong; petals 5, crumpled or smooth, incurved, erect or horizontal, equal, linear, oblong, or oblanceolate, with rounded or acute apices; stamens (8–)10–80, filaments free or briefly connate basally; anthers dorsifixed, versatile, longitudinally dehiscent; ovary inserted +/- centrally, occasionally eccentric, free, short-stipitate or subsessile, pubescence varied but rarely glabrous, light green or pinkish, often turning red post anthesis, ovules 1 (2); style eccentric, glabrous; stigma capitate. Legumes
indehiscent, splitting along suture after germination due to action of emerging shoot, orbicular to oblong, often laterally compressed, smooth to deeply fissured, often apiculate (in some taxa only when immature), valves 0.5–4.0 mm thick, cork-like in several species, remaining attached to cotyledons during and after germination. **Seeds** 1–2, enclosed in fruit until germination. **Seedling** germination epigeal.

The emended description above reflects the merger of *Maniltoa* and *Cynometra* s.s. and the exclusion of the east African taxa with dehiscent pods, paniculate inflorescences and articulated pedicels (Tables 1, 2). While many taxa in the former *Maniltoa* are no doubt distinctive and, in many cases, striking when compared to the more unassuming *Cynometra*, a close examination of their morphological characteristics reveals a strong similarity. The number of stamens has been perhaps the most distinctive and most often cited character separating the two genera. *Cynometra* has long been known to have only 10 stamens, while *Maniltoa* has been traditionally treated as having anywhere from 15–80 stamens. Indeed, this proliferation in stamen number is rare in the Detarioideae. However, a closer look at the Indo-Pacific *Cynometra* reveals several examples of species which regularly have as few as eight stamens (*Cynometra glomerulata* Gagnep.) or as many as 12 (*Cynometra katikii* Verdc.) and some with variation across the range within a species (8–10 stamens in *Cynometra cauliflora* L. and 10–15 stamens in *Cynometra ramiflora* L.; Knaap-van Meeuwen 1970, Verdcourt 1979). So, while the majority of species, placed within *Cynometra*, do have 10 stamens, there is lability amongst this trait in the taxa of the region.

Several other characteristics of *Maniltoa* that supposedly distinguish it from *Cynometra* are also incorrect. The first is the presence of conspicuous ‘bract covered’ vegetative and reproductive buds (Scheffer 1876, Harms 1902, 1919). In some species of *Maniltoa*, these buds can be many centimetres long and several centimetres in diameter. The scales themselves are often tan or brown, but can be whitish or pinkish and are often covered with parallel striations running longitudinally along the surface. These types of buds are also present in *Cynometra*, although they are much smaller, in some cases only 4 or 5 mm long. Likewise, the scales are similar in shape, vestiture and surface texture. Another general characteristic used to separate the two genera has been the sturdiness of the inflorescence rachis in *Maniltoa* (Knaap-van Meeuwen 1970). However, this is likely related to the overall general difference in size of the flowers and inflorescence between the two genera: *Maniltoa* tend to have larger buds, bracts, inflorescences and individual flowers. The larger inflorescences of the *Maniltoa* species may be an adaptation to mammal pollination as there are reports of marsupials and bats visiting the flowers of *Maniltoa* species in Australia and the Pacific Islands (Marshall 1985, Endress 1994). Scheffer (1876) cited the presence of a tendril terminating the leaf rachis as a distinguishing character of *Maniltoa*, but Dwyer (1958) notes that this trait is present in several *Cynometra*. Finally, differences in wood anatomy given by Knaap-van Meeuwen (1970) have been found to be insufficiently distinct from one another and overlapping in range (Soerianegara 1993; Pan et al. 2010).

The most clearly distinguishing feature of the newly emended *Cynometra* with respect to the taxa here excluded (*Cynometra clade A*) is the indehiscent pod. Indeed, if one examines the taxa misplaced in *Cynometra* over the years, they nearly all share the characteristic of dehiscent pods. Unfortunately, Linnaeus makes no mention of the
nature of the pods’ dehiscence. Likewise, subsequent treatments were vague. Bentham (1865b), Taubert (1894) and Harms (1897) all described the pods as ‘two-valved’ without further elaboration. Léonard (1951) and Aubréville (1968, 1970) cite the pods of ‘typical Cynometra’ as dehiscent or indehiscent, likely owing to the fruit of Cynometra mannii, the valves of which are not dehiscent but, upon pressing and drying, often split and rupture in several places along axes roughly perpendicular to the sutures. A similar occurrence is observed in the Neotropical species Cynometra bauhiniifolia Benth. When Harms (1899) described C. sessiliflora, he set a precedent regarding the pod characters that contributed to the imprecise delimitation of Cynometra and subsequently led to the taxonomic confusion surrounding Cynometra in Africa.

With this new circumscription, the two genera are united and share radially symmetric flowers, bract covered buds (with bracts persisting on the inflorescence), flowers with early caducous bracteoles not enveloping the flowers and indehiscent fruits (which may play a role in dispersal as many taxa are associated with alluvial habitats or appear as drift ‘fruit’ in coastal environments; Ridley 1930, Léonard 1951, Clarke et al. 2001, Tomlinson 2016). The new classification changes the overall distribution of the taxa. Prior to this, Cynometra was a genus with its diversity distributed somewhat evenly across the American, African and Asian tropics. However, with the exclusion of many of the African species and the inclusion of the former Maniltoa, Cynometra is now a genus whose primary centre of diversity is the Indo-Pacific region, with a secondary centre in the Neotropics and the majority of Afrotropic taxa restricted to Madagascar.

Table 1. Species excluded from Cynometra. Distributions correspond to regions given in text. Species may occupy only a part of the overall region. MTA = mainland tropical Africa.

<table>
<thead>
<tr>
<th>Species</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynometra alexandri C.H. Wright</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra ananta Hutch. & Dalziel</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra brachyrrhachis Harms</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra engleri Harms</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra filifera Harms</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra fischeri Baker f.</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra gilletii De Wild.</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra gillmanii J. Léonard</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra greenwayi Brenan</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra hankei Harms</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra leonensis Hutch. & Dalziel</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra longopedicellata Harms</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra luiae De Wild.</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra nyangensis Pellegr.</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra oddonii De Wild.</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra palustris J. Léonard</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra pedicellata De Wild.</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra sessiliflora Harms</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra suaheliensis (Taub.) Baker f.</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra ulugurenensis Harms</td>
<td>MTA</td>
</tr>
<tr>
<td>Cynometra webberi Baker f.</td>
<td>MTA</td>
</tr>
</tbody>
</table>
Table 2. Accepted species of *Cynometra*. Taxonomy follows: Knaap Van-Meeuwen 1970; Léonard 1951; Dwyer 1958. New combinations and new species presented in text are not included. Distributions correspond to regions given above. Species may occupy only a part of the overall region. COM = Comoros Islands; INP = Indo-Pacific; MAD = Madagascar; MTA = mainland tropical Africa; NEO = Neotropics.

<table>
<thead>
<tr>
<th>Species Distribution</th>
<th>Species Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cynometra abrahamii Du Puy & R.Rabev. MAD</td>
<td>Cynometra longifolia Huber NEO</td>
</tr>
<tr>
<td>Cynometra americana Vogel NEO</td>
<td>Cynometra lyallii Baker MAD</td>
</tr>
<tr>
<td>Cynometra ankararunensis Dupuy & R.Rabev. MAD</td>
<td>Cynometra madagascariensis Baill. MAD</td>
</tr>
<tr>
<td>Cynometra aurita R.Vig. MAD</td>
<td>Cynometra marginata Baill. NEO</td>
</tr>
<tr>
<td>Cynometra bauhiniifolia Benth. NEO</td>
<td>Cynometra maxima Oliv. MTA</td>
</tr>
<tr>
<td>Cynometra beddomei Prain INP</td>
<td>Cynometra margareta Baill. NEO</td>
</tr>
<tr>
<td>Cynometra capuronii Du Puy & R.Rabev. MAD</td>
<td>Cynometra marliacea A.S.Tav. NEO</td>
</tr>
<tr>
<td>Cynometra cauliflora L. INP</td>
<td>Cynometra mayottensis Labat & O.Pascal COM</td>
</tr>
<tr>
<td>Cynometra cloesi Drake MAD</td>
<td>Cynometra melagiophilla Harms MTA</td>
</tr>
<tr>
<td>Cynometra commersoniana Bataill. MAD</td>
<td>Cynometra microflora R.S.Cowan NEO</td>
</tr>
<tr>
<td>Cynometra congensis De Wild. MTA</td>
<td>Cynometra minutaflora E.Muell. INP</td>
</tr>
<tr>
<td>Cynometra copelandii (Elmer) Elmer INP</td>
<td>Cynometra mirabilis Meeuwen INP</td>
</tr>
<tr>
<td>Cynometra crassifolia Harms INP</td>
<td>Cynometra novoguineensis Merr. & L.M.Perry INP</td>
</tr>
<tr>
<td>Cynometra cuberensis A.Rich. MTA</td>
<td>Cynometra oaxacana Brandegge NEO</td>
</tr>
<tr>
<td>Cynometra cuneata T. Ul. NEO</td>
<td>Cynometra parviflora T. Ul. NEO</td>
</tr>
<tr>
<td>Cynometra dauphinensis Dupuy & R.Rabev. MAD</td>
<td>Cynometra peruviana T. Ul. NEO</td>
</tr>
<tr>
<td>Cynometra doriae Benth. NEO</td>
<td>Cynometra rivetii Labat & O.Pascal COM</td>
</tr>
<tr>
<td>Cynometra duckei Dwyer NEO</td>
<td>Cynometra retusa Britton & Urb. NEO</td>
</tr>
<tr>
<td>Cynometra elmeri Mer. INP</td>
<td>Cynometra rhamniflora L. INP</td>
</tr>
<tr>
<td>Cynometra falcatu A.Gray INP</td>
<td>Cynometra retusa Britton & Urb. NEO</td>
</tr>
<tr>
<td>Cynometra fusicuspis (Pittier) Pittier NEO</td>
<td>Cynometra rhamniflora L. INP</td>
</tr>
<tr>
<td>Cynometra floeretti Labat & O.Pascal COM</td>
<td>Cynometra schlechteri Harms MTA</td>
</tr>
<tr>
<td>Cynometra gloriosata Gagnep. INP</td>
<td>Cynometra scabiosifolia Harms MTA</td>
</tr>
<tr>
<td>Cynometra graciliflora A.Gray INP</td>
<td>Cynometra schottiana Hochr. NEO</td>
</tr>
<tr>
<td>Cynometra hemitomophylla (Donn.Sm.) Rose MTA</td>
<td>Cynometra simplicifolia Harms INP</td>
</tr>
<tr>
<td>Cynometra hemistomatophylla (Donn.Sm.) Rose NEO</td>
<td>Cynometra spruceana Bataill. NEO</td>
</tr>
<tr>
<td>Cynometra hondurenensis Dwyer NEO</td>
<td>Cynometra stenoptera Dwyer NEO</td>
</tr>
<tr>
<td>Cynometra hostmanniana Tiel. NEO</td>
<td>Cynometra stenoptera Dwyer NEO</td>
</tr>
<tr>
<td>Cynometra humboldtiana Steljes NEO</td>
<td>Cynometra truncifolia Oliv. NEO</td>
</tr>
<tr>
<td>Cynometra insulata A.C.Sm. INP</td>
<td>Cynometra vogelii Hook.f. MTA</td>
</tr>
<tr>
<td>Cynometra isipia Kostel. INP</td>
<td>Cynometra warburgii Harms MTA</td>
</tr>
<tr>
<td>Cynometra katikii Veeco. INP</td>
<td>Cynometra warburgii Elmer INP</td>
</tr>
<tr>
<td>Cynometra leucotricha (Pellegr.) J.Léonard MTA</td>
<td>Cynometra wightfordii Harms INP</td>
</tr>
<tr>
<td>Cynometra longistylia Duce INP</td>
<td>Cynometra yokotai Harms INP</td>
</tr>
<tr>
<td>Cynometra macrocarpa A.S.Tav. NEO</td>
<td>Cynometra yunnanea Bataill. NEO</td>
</tr>
<tr>
<td>Cynometra megalophylla A.S.Tav. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra commersoniana Bataill. MAD</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra minutaflora E.Muell. INP</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra longifolia Huber NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra lukei Beentje MTA</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra lyallii Baker MAD</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra madagascariensis Baill. MAD</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra marleneae A.S.Tav. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra maxima Oliv. MTA</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra margerita Baill. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra marginata Baill. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra mayottensis Labat & O.Pascal COM</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra microflora R.S.Cowan NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra mayottensis Labat & O.Pascal COM</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra melagioflora Baill. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra melagioflora Baill. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra melagioflora Baill. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
<tr>
<td>Cynometra melagioflora Baill. NEO</td>
<td>Cynometra zumi Harms MTA</td>
</tr>
</tbody>
</table>

Part II: Reduction of *Maniltoa* into *Cynometra*

The generic rearrangements require new combinations to reflect the merging of *Maniltoa* into *Cynometra*. For *Maniltoa*, in most cases, the taxonomy proposed by Knaap-van Meeuwen (1970) has been followed, but for some species limits, the interpretations of Verdcourt (1979) have been followed; such deviations are noted. Species, for which a combination already exists in *Cynometra*, are not listed (Knaap-van Meeuwen 1970). In total, 18 new combinations and one new name are proposed. A lectotype is designated for *Maniltoa megalocephala* Harms and a neotype is designated for *Maniltoa peekelii* Harms.
1. *Cynometra basifoliola* (Verdc.) Rados., comb. nov.
urn:lsid:ipni.org:names:77199243-1

Notes. The arrangement of leaflets for which this species is named (i.e. the basal-most pair of leaflets inserted just above petiole and separated from terminal pair of leaflets by a relatively long rachis) is unusual amongst the species that were formerly included in *Maniltoa*; however some species of *Cynometra* have a similar arrangement (e.g. *Cynometra sakalava* Du Puy & R.Rabev from Madagascar).

urn:lsid:ipni.org:names:77199244-1

Notes. The protologue lists the collection year as 1928, however 1926 appears to be the correct date. While the label affixed to the holotype does list the collection date as “14 May 1928”, this appears to be a transcription error. The handwritten slip attached to the holotype, presumably filled out by the collector Brass, gives the date as “14/5/26”. Additionally, the printed label is titled “Arnold Arboretum Expedition, 1925–1926”. The label on the isotype also has the collection date as 14 May 1926.

urn:lsid:ipni.org:names:77199245-1

Notes. According to Knaap-van Meeuwen (1970, p. 42), the type material for *Maniltoa browneoides* came from a cultivated specimen grown at Bogor Botanical Gar-
dens from seeds or seedlings collected by Forbes on New Guinea, however no citation is given as the source for this information. The holotype for *M. gemmipara* is listed as being at Leiden by Knaap-van Meeuwen, however there are no specimens there annotated as such. There are two specimens, however, from Java collected in 1908 that seem to match the details in the protologue. These are filed as *M. gemmipara* and have the registration numbers L.3886447 and L.3886448.

Basionym. *Maniltoa lenticellata* C.T.White, J. Arnold Arbor. 8: 130. 1927. Type. PAPUA [PAPUA NEW GUINEA]. Northern Division: Sageri, July 1922, [fl], C. E. Lane-Poole 203 (holotype: BRI; isotype: A).

The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

8. **Cynometra mariettae** (van Meeuwen) Rados., comb. nov. urn:lsid:ipni.org:names:77199250-1

9. **Cynometra megalocephala** (Harms) Rados., comb. nov. urn:lsid:ipni.org:names:77199251-1

Notes. All three syntypes cited in Harms’ original description were destroyed and no isotypes have been located. Therefore plate 2 (tab. 2) from Harms 1917 is designated as the lectotype (Figure 2).

10. **Cynometra minor** (A.C.Sm.) Rados., comb. nov. urn:lsid:ipni.org:names:77199252-1

12. **Cynometra psilogyne** (Harms) Rados., comb. nov. urn:lsid:ipni.org:names:77199254-1

13. **Cynometra rosea** (K.Schum.) Rados., comb. nov.
urn:lsid:ipni.org:names:77199255-1

Notes. I agree with Verdcourt (1979) that this synonymy is questionable. However, with the original type material destroyed and to avoid creating an unnecessary new combination, I have elected to follow Knaap-van Meeuwen’s treatment here.

14. **Cynometra schefferi** (K.Sch.) Rados., comb. nov.
urn:lsid:ipni.org:names:77199256-1

15. **Cynometra schefferi** var. **peekelii** (Harms) Rados., comb. nov.
urn:lsid:ipni.org:names:77199257-1

Note. When Verdcourt (1977) published the above name at a new rank, he did not name a neotype. He did cite several representative specimens and specifically men-
Figure 2. Illustration of *Maniltoa megalocephala* Harms, reproduced from protologue and designated here as the lectotype.
tioned Coode et al NGF 29604 as a specimen he was certain belonged to this species. Given that it is well represented in herbaria and was collected near the original type locality, this specimen has been chosen as the neotype.

16. **Cynometra steenisii** (van Meeuwen) Rados., *comb. nov.*
urn:lsid:ipni.org:names:77199258-1

Notes. Knaap-van Meeuwen incorrectly cites the holotype as being housed in BRI.

17. **Cynometra steenisii** var. **rodneyensis** (Verdc.) Rados., *comb. nov.*
urn:lsid:ipni.org:names:77199266-1

18. **Cynometra vestita** (A.C.Sm.) Rados., *comb. nov.*
urn:lsid:ipni.org:names:77199267-1

19. **Cynometra vitiensis** Rados., *nom. nov.*
urn:lsid:ipni.org:names:77199269-1

Notes. This species is named after the nation of Fiji, where it is endemic, but somewhat common and widespread, occurring on at least six islands (Smith 1985).
Part III: Four new species of Cynometra

A monograph of the Neotropical species of Cynometra was published by Dwyer (1958), but it was limited by the lack of fertile material. In the intervening decades, however, many new collections have been made, particularly in the Amazon basin, the centre of diversity of the genus in the New World. This has made revisionary work more feasible and uncovered previously undocumented diversity. In the context of the ongoing taxonomic and phylogenetic studies, several new species have been discovered in existing herbarium collections. Four new species are described below: Cynometra cerebriformis sp. nov. from the lower Rio Trombetas in Para State, Brazil; Cynometra dwyerii sp. nov. from the Darien gap region of Panama; C. tumbesiana sp. nov. from the dry tropical forests of Ecuador and Peru; and C. steyermarkii sp. nov. from the foothills of the western Cordillera de la Costa in Venezuela (Figure 3).

1. Cynometra cerebriformis Rados., sp. nov.
urn:lsid:ipni.org:names:77199270-1
Figures 4, 5

Description. Tree to 20 m tall; bark not seen; branchlets rough, lenticels prominent, bud scale scars partially encircling stems near base, new growth with short scattered pubescence, glabrous or nearly so at maturity. **Stipules** not seen. **Leaves** bi-fooliolate, pulvinate, axes glabrous or with sparse pubescence concentrated on adaxial surfaces; petioles 3.0–4.0 mm long, 1.0 mm wide, transversely corrugated; petiolules 0.5–1.0 mm long, 0.5 mm wide, transversely corrugated; leaflets appearing sessile, coriaceous, obelliptic to obovate, asymmetric, primary vein eccentric, proximal side 2.0–2.7 times wider than distal, 3.1–4.5 cm long, 1.1–1.9 cm wide, abaxial surface with scattered raised areas both surfaces glabrous, primary venation pinnate, secondary venation brochidodromous-eucamptodromous, 3–4 basal acrodromous veins, decurrent to primary vein, prominent abaxially, their course barely visible adaxially, tertiary venation difficult to discern on either surface even under magnification, margins entire, apex acute, usually short acuminate (acumen to 4.0 mm), retuse, mucronate, base oblique, acute, distal side narrowly cuneate with margin nearly parallel to midvein for 8.0–10.0 mm, proximal side convex, decurrent to petiolule, laminar glands absent. **Inflorescence** an axillary raceme, (1–)2 per axil, bracteate, axes ferrugino-pilose; peduncle 1.0–2.0 mm, rachis 2.0–5.0 mm long, flowers spirally arranged, 2–10 per raceme; pedicels 7.0–10.0 mm and filamentous in anthesis, to 18.0 mm and accrescent in fruit; bracts subtending individual flowers, scale-like, quickly deciduous, brown, broadly elliptical to deltoid, strongly convex 1.5–2.5 mm long, 1.0–1.5 mm wide, striate, abaxial surface pubescent, pubescence denser at base and along margins, glabrous adaxially; bracteoles not seen. **Flowers** bisexual, radially symmetric, pentameres, delicate; hypanthium cupular, 0.7–1.0 mm deep,
surrounding basal portion of ovary, fleshy, abaxial surface pubescent, adaxial surface glabrous; sepals 4, imbricate, reflexed, abaxial and adaxial sepals larger than lateral, greenish-white, petaloid, oblong to elliptic, apices acute to rounded, 3.0–4.0 mm long, 1.0–2.0 mm wide, pubescence on abaxial surface near apex, with faint parallel venation; petals 5, equal, white, crumpled texture, curving inwards, oblanceolate, 4.0–5.0 mm long, 1.0–1.5 mm wide, adaxial surface with minute appressed hairs, pinnate venation; stamens 10, filaments free, subequal, 7.0–8.5 mm long, anthers dorsifixed, versatile, longitudinal dehiscence, ellipsoid, to 1.0 mm long, glabrous; ovary centrally inserted, free, stipitate, obliquely elliptical, 2.5–3.0 mm long, 1.5–2.0 mm wide, tomentose, stipe 0.5 mm, style apical, 2.0–2.5 mm long, glabrous, eccentric, curving downwards, stigma capitate. **Legume** indehiscent, oblate, rugose, apiculate when immature, 14.2–17.5 mm long, 7.1–9.2 mm wide, 12.1–13.9 mm thick, valves pubescent, wall of pericarp up to 2.5 mm thick, brown. **Seeds** 1 per pod, filling locule, dark brown.

Distribution and ecology. Currently, this species appears restricted to the Trombetas River Basin of Para State, Brazil. However, it is quite possible that the range is more extensive given that the species occurs in seasonally flooded forests and the genus is known for water dispersed fruits (Ridley 1930, Clarke et al. 2001, Tomlinson 2016). Little else is known about this taxon.

Phenology. Flowering specimens have been collected in May. Fruiting specimens have been collected in June and August.
Figure 4. Illustration of *Cynometra cerebriformis*. A Habit B bud with imbricate bracts C leaf base showing corrugated petiole and petiolule D inflorescence rachis showing bract scars on main axis and remnants of bracteoles on pedicels E flower F infructescence with single pod G bract H sepal I petal J longitudinal section of hypanthium and receptacle; sepals, petals and stamens removed. A–E, G–J Campbell et al. P22338, US F G. Martinelli 7016, US.
Etymology. *Cynometra cerebriformis* is named after the brain-like appearance of the mature fruit.

The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

Notes. This taxon has been collected in the areas around Santarem and Oriximiná in Para, Brazil. Many of the specimens have been annotated by Adalea Sprada Tavares as *Cynometra duckei* ssp. *trombetensis*, but I can find no record of publication and several of the specimens thus annotated are assigned to different taxa in her unpublished thesis (Sprada Tavares 1987). The available material of *C. duckei* is limited and only a few fruiting specimens exist. While a case can be made that *C. duckei* shares certain vegetative traits with *C. cerebriformis* (prominent lenticels, the smoothness of the adaxial surface of the leaflets), it also shares characteristics with several other taxa, including *C. spruceana* var. *spruceana* (long pedicels, leaflet shape) and *C. marginata* var. *laevis* (smooth leaflet surface, nearly sessile leaflets). In light of the characters separating *C. cerebriformis* from other taxa (see below), the author has opted to describe this taxon at the species level.

Cynometra cerebriformis differs from *C. duckei* primarily in the shape of the leaflets. *Cynometra cerebriformis* differs from *C. spruceana* var. *spruceana* in several ways. The leaflets of *C. cerebriformis* are generally smaller than those of *C. spruceana* var. *spruceana* and the surface is nearly smooth, while the secondary veins are quite obvious in *C. spruceana*. *Cynometra cerebriformis* also lacks the basal laminar gland present in *C. spruceana* and many other *Cynometra* taxa. Finally, the fruit of *C. spruceana* is approximately 1.5×–2.5× larger than the fruit of *C. cerebriformis* and the valves are smooth to slightly rugulose, lacking the strongly rugose surface of *C. cerebriformis*.

Cynometra cerebriformis differs from *C. marginata* var. *laevis* by having an acute leaflet base, short acumen and oblate rugose fruit; *C. marginata* var. *laevis* has an obtuse leaflet base, long acumen and a globose fruit with a prominent raised suture ridge.

2. *Cynometra dwyerii* Rados., sp. nov.

URN:lsid:ipni.org:names:77199272-1

Figures 6, 7

Type. PANAMA. Darién [now Comarca Emberá-Wounaan]: vicinity of Campamento Buena Vista, Río Chucunaque above confluence with Río Tuquesa, [08°23′N, 77°47′W] 5 July 1959, [fr.], W. L. Stern 941 (holotype US; isotype MO).

Description. **Tree** to approximately 20 m tall; bark not seen; branchlets lenticellate, pubescent when young, becoming glabrous with age. **Stipules** not seen. **Leaves** bifoliolate, axes pubescent, transversely corrugated; petioles 4.5–5.5 mm long; petiolules 1.0–1.5 mm long, inconspicuous, leaflets appearing sessile; leaflets narrowly obovate to obovate, occasionally sub-trapeziform, strongly asymmetric, primary vein
Figure 6. Illustration of *Cynometra dwyerii*. **A** Leaf base (adaxial surface) showing corrugated petiole and pubescence along midrib **B** habit **C** leaf base (abaxial surface) showing basal acrodromous veins arising from leaflet pulvinus and laminar glands **D** leaflet apex (abaxial surface) **E** Dissected fruit, proximal surface **F** dissected fruit, distal surface **G** longitudinal section of fruit with single seed **H** reconstruction of fruit. **A–H** Stern et al. 941, US.
The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

Figure 7. Photograph of the holotype of *Cynometra dwyerii* (Stern et al. 941, US).
eccentric, proximal side 2.8–3.7 times wider than distal, 3.1–3.9 cm long, 1.4–1.9 cm wide, thin, abaxial surface sparsely pubescent, more so on midvein and major secondaries, adaxial surface with pubescence restricted primarily to midvein, occasional hairs scattered on lamina, primary venation pinnate, secondary venation brochidodromous-eucamptodromous, 2(−3) basal acrodromous veins, decurrent to primary, prominent abaxially, only slightly less so adaxially, tertiary venation visible on both surfaces at 10× magnification, margins entire, apex acute, weakly acuminate (to 2.0 mm), retuse, mucronate, base oblique, acute, distal side narrowly cuneate, proximal side slightly concave to cuneate, decurrent to petiolule, laminar glands present, 3–6 per leaflet, arranged in a row approximately halfway between margin and midvein, restricted to distal portion of lamina, typically adjacent to tertiary veins, crateriform, less than 1.0 mm in diameter. Inflorescences not seen, position inferred as axillary from remnant of peduncle. Flowers not seen. Legume indehiscent, roughly globose, to 4.7 cm in diameter, surface of valves rugulose, wall of pericarp up to 3.0 mm thick, deep brown colour at maturity. Seeds 1 per pod, filling entire cavity, dark brown.

Distribution and ecology. Known only from the type locality in the Darien Gap region of Panama; the area where the type was collected is primarily lowland moist tropical forest.

Phenology. The type was collected with mature fruit in July.

Etymology. The specific epithet honours the contributions of Dr. John Dwyer, who published the first monograph of the Neotropical species of *Cynometra*.

Note. This species is known only from the type collection, however the combination of vegetative characters and fruit morphology make it clearly distinct from other *Cynometra* species. Superficially, this species resembles *C. bauhiniifolia*, given its small leaflets with prominent secondary venation. However, the pubescence and arrangement of laminar glands clearly distinguish it from other Neotropical species of *Cynometra*, which usually have just a single, basal laminar gland. In fact, the combination of bifoliolate leaves with small leaflets and several submarginal laminar glands is unique across the entire genus. When these characters are combined with the large, globose fruit, it is clear that this is a distinct species.

Additional specimens examined. None.

3. *Cynometra steyermarkii* Rados., sp. nov.

urn:lsid:ipni.org:names:77199276-1

Figures 8–10

Type. VENEZUELA. Miranda: Distrito Brión, Selva siempre verde a lo largo de la quebrada afluente del río Aricagua, 3.9 km oeste del Pueblo Seco, 1.6 km oeste de Aricagua, 75 m alt., 24–25 March 1973, [fl, fr], J. A. Steyermark & V. Carreño Espinoza, 106937 (holotype: US; isotypes: F, VEN n.v.).

Description. *Tree* to 25 m tall; bark not seen, sapwood reddish; branchlets glabrous, lenticelate. *Stipules* not seen. *Leaves* bifoliolate, axes glabrous; petioles 6.5–
The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

9.0 mm long, 2.0 mm wide, transversely corrugated; petiolules 2.0–3.0 mm long, 1.0 mm wide, transversely corrugated; leaflets 2.0–3.0 mm long, 1.0 mm wide, transversely corrugated; leaflets, coriaceous, elliptic to slightly obovate, asymmetric, primary vein eccentric, proximal side 2.3–3.1 times wider than distal, 5.7–7.1 cm long, 2.7–3.6 cm wide, discolorous, abaxial and adaxial surface glabrous, primary venation pinnate, secondary venation brochidodromous-eucamptodromous, 2(–3) basal acrodromous veins, decurrent to primary vein, prominent abaxially, slightly raised adaxially, tertiary venation visible on abaxial surface without magnification, margins entire, apex obtuse, usually rounded but occasionally acuminate (to 3.0 mm), retuse, mucronate, base oblique, acute, distal side strongly cuneate, proximal concave to convex, decurrent to petiolute, single laminar gland present on some leaflets, abaxial, near basal margin of proximal lamina and insertion point of petiolute, typically adjacent to tertiary veins, crateriform, 0.5 mm in diameter. **Inflorescence** an axillary raceme, bracteate, axes densely ferrugino-puberulent; peduncle together with rachis to 6.0 mm long, flowers spirally arranged, 15 per raceme; pedicels 5.5–6.0 mm, pubescent, accrescent in fruit; bracts subtending individual flowers, scale-like, deciduous, lustrous, brown, broadly elliptical, strongly convex 1.0–2.0 mm long, 1.5–2.5 mm wide, striate, abaxial surface with appressed pubescence along medial surface and along margins, glabrous adaxially; bracteoles paired, inserted near base of pedicel, subopposite, linear to oblanceolate, 2.5–3.0 mm long, 0.75 mm wide, acute at apex, densely pubescent on abaxial surface, less so adaxially. **Flowers** bisexual, radially symmetric, pentamerous, delicate; hypanthium much reduced, less than 0.5 mm deep, with a few scattered hairs on abaxial and adaxial surface; sepals 4, imbricate, reflexed, slightly unequal, white, petaloid, oblong to obovate, 2.5–3.5 mm long, 1.0–1.5 mm wide, faintly striate, appressed pubescence on abaxial surface near insertion point and along central axis; petals 5, equal, white, oblanceolate, 3.5–4.5 mm long, 1.0–1.5 mm wide, pinnate venation; stamens 10, filaments appearing free but possibly connate for approximately 0.25 mm at base, subequal, 4.0–5.5 mm long, anthers dorsifixed, versatile, longitudinal dehiscence, ellipsoid, to 0.75 mm long, glabrous; ovary centrally inserted, free, sessile, obliquely elliptical, 2.5–4.0 mm long, 1.5–3.0 mm wide, pubescent at base and along suture, becoming glabrous with age, style apical, 1.5–2.5 mm long, glabrous, eccentric, stigma capitate. **Legume** indehiscent, globose, shortly apiculate (to 0.75 mm), 1.5 cm in diameter, surface of granulose, with very short pubescence, wall of pericarp up to 2.0 mm thick, brown. **Seeds** 1 per pod (1 ovule per ovary based on dissections), dark brown.

Distribution and ecology. Known from a single collection made in Miranda State, Venezuela. The species was collected growing along a small stream in the foothills of the Cordillera de la Costa at approximately 75 m above sea level. While much of the region is covered in xeric shrublands and thorn forests, this site corresponds to a low gallery forest growing along a tributary of the Río Aricagua.

Phenology. The type material was collected at the end of March with late flowers and nearly mature fruit.

Etymology. The specific epithet honours Dr. Julian A. Steyermark, the collector of the type material and a prolific collector of neotropical plants. Over the course of his
Figure 8. Illustration of *Cynometra steyermarkii*. **A** Habit, flowering branch **B** habit, fruiting branch **C** leaf base, showing basal acrodromous veins arising from leaflet pulvinus **D** inflorescence rachis, showing bracts and bracteoles; pedicels removed to show structure **E** buds with imbricate bracts **F** flower **G** bract **H** bracteoles **I** sepals **J** petal **K** longitudinal section of flower showing single ovule and much reduced hypanthium; sepals, petals and stamens removed. **A–K** Steyerm. et al. 106937, US.
The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

Figure 9. Photograph of the holotype of *Cynometra steyermarkii*, sheet one of two (*Steyermark et al. 106937*, US).

career, he made over 130,000 collections and greatly advanced our knowledge of the Venezuelan flora.

Additional specimens examined. None.
Figure 10. Photograph of the holotype of *Cynometra steyermarkii*, sheet two of two (Steyermark et al. 106937, US).

Notes. *Cynometra steyermarkii* is the only confirmed species of *Cynometra* known from the forests of the Cordillera de la Costa in northern Venezuela and one of two species of Venezuelan *Cynometra* growing outside of the Guayana region. Henri Pittier
(1926) published an account of a *Cynometra* growing in the hills outside of Caracas, *Cynometra sphaerocarpa* Pittier, for his *Manual de las plantas usuales de Venezuela*. While the description is valid, according to the rules of nomenclature in effect at the time, he failed to designate a type or list any collections that may correspond to this taxon. In his 1958 revision, Dwyer was unable to locate any material that could be assigned to this taxon and pointed out the limited utility of Pittier’s description – ‘Las hojas inequilaterales, lanceadas, largamente atenuadas y glabras... Los frutos son subgloboosos, de 3.5–4 cm. de diametro y contienen una sola semilla [Leaflets asymmetric, lanceolate, largely attenuate and glabrous. The fruits are sub-globose, 3.5–4 cm in diameter, and contain a single seed],’ – which could very well describe any number of *Cynometra* species, including *C. steyermarkii*. A full set of Pittier’s duplicates from this publication should be deposited in the United States National Herbarium (US), but after exhaustive searches in the US collections and a study of both Pittier’s archives and the museum registrar’s records, I was unable to find any material that could be attributable to *C. sphaerocarpa*. Curators at Herbario Nacional de Venezuela graciously searched through material housed there, but were also unsuccessful. While it is possible that *C. steyermarkii* and *C. sphaerocarpa* are the same taxon, without Pittier’s original material, it is impossible to know for sure. Rather than leave this unresolved, it is more useful to describe a new species with good type material.

This species bears a resemblance to *Cynometra spruceana* var. *phaselocarpa* Benth. owing to the obtuse nature of the leaf apices. However, *C. steyermarkii* often has slightly acuminate apices. Furthermore, both the rachis and pedicels of the inflorescence are much shorter in *C. steyermarkii* than in typical *C. spruceana* var. *phaselocarpa*.

4. *Cynometra tumbesiana* Rados., sp. nov.
urn:lsid:ipni.org:names:77199277-1
Figures 11, 12

Type. ECUADOR. El Oro: Bosque Petrificado Puyango, dirt track from information centre towards the camping area near Río Puyango, 03°52’30”S, 80°05’01”W, 450 m alt., 6 May 1997 [fl], B.B.Klitgaard et al. 507, (holotype K; isotype AAU n.v., LOJA n.v., NY, QCNE n.v., US).

Description. Tree 10–25 m tall; bark grey-brown, lenticelate, inner bark red; branchlets with short pubescence when young, becoming glabrous with age. *Stipules* not seen. *Leaves* bifoliolate, axes ferrugino-puberulent when young, glabrous when mature; petioles 4.5–6.5 mm long, transversely corrugated; petiolules 1.5–2.0 mm long, inconspicuous; leaflets oblong-ovate to elliptic to oblong-ovate, occasionally slightly falcate or sub-trapeziform, strongly asymmetric, primary vein eccentric, proximal side 1.8–2.5 times wider than distal, 4.1–7.9 cm long, 2.5–3.3 cm wide, discolorous, abaxial surface sparsely pubescent on midvein, secondary veins and along basal margin, adaxial surface glabrous, primary venation pinnate, secondary venation brochidodromous-eucamptodromous, 2–3 (–4) basal acrodromous veins, decurrent to
primary vein, prominent abaxially, flush to slightly raised adaxially, tertiary venation visible on abaxial surface at 10× magnification, margins entire, apex acute, acuminate (to 6.0 mm), retuse, mucronate, base oblique, distal side acute, convex to cuneate, proximal side obtuse, concave to rounded, decurrent to petiolule, single laminar gland present, abaxial, near basal margin of proximal lamina and insertion point of petiolule, typically adjacent to tertiary veins, crateriform, 1.0 mm in diameter. **Inflorescence** a cluster of (1–)2–3 axillary racemes, bracteate, axes ferrugino-puberulent at base, hairs becoming scattered at distal end; peduncle together with rachis 4.5–8.0 mm long, flowers spirally arranged, 12–20 per raceme; pedicels 5.0–9.0 mm, pubescent initially but soon glabrescent, accrescent in fruit; bracts subtending individual flowers, scale-like, deciduous, leaving behind a lunate scar on the rachis, lustrous, brown, broadly elliptical, strongly convex 1.5–2.5 mm long, 1.5–2.5 mm wide, striate, abaxial surface with scattered appressed pubescence at apex and along margins, glabrous adaxially; paired bracteoles inserted 0.5–1.0 mm from base of pedicel, subopposite, oblong-lanceolate, 2.0–2.5 mm long, 1.0 mm wide, convex at apex, pubescent along margins and medial abaxial surface. **Flowers** bisexual, radially symmetric, pentamerous, delicate; hypanthium cupular, 1.0–1.5 mm deep, fleshy, with a few scattered hairs on abaxial and adaxial surface; sepals 4, imbricate, reflexed, unequal, adaxial sepal usually 2 times as wide as the others, white, petaloid, broadly ovate to elliptical, 3.0–4.5 mm long, 1.5–4.0 mm wide, striate, scattered pubescence at base; petals 5, erect, equal to subequal, white, spathulate to oblanceolate, 3.5–5.5 mm long, 1.0–2.0 mm wide, glabrous but with a tuft of hair at base of claw; stamens 10, filaments free, subequal, 5.5–7.5 mm long, white, anthers dorsifixed, versatile, longitudinal dehiscence, suborbicular, to 1.5 mm long, yellow-orange, glabrous; ovary centrally inserted in hypanthium, free, stipitate, obliquely elliptical, 4.0–5.0 mm long, 2.0–2.5 mm wide, densely pilose, stipe 0.5–1.0 mm long, style apical, 3.0–4.0 mm long, glabrous, eccentric, geniculate, stigma capitata. **Legume** indehiscent, oblong, weakly apiculate, slightly compressed, up to 5.2 cm long, 4.0 cm wide, 3.9 cm thick, surface of valves finely textured, granulose, wall of pericarp up to 4.0 mm thick, deep brown colour at maturity. **Seeds** 1 per pod, filling entire cavity, dark brown.

Distribution and ecology. *Cynometra tumbesiana* occurs in the seasonally dry tropical forests of western and southern Ecuador and north-western Peru (a single collection) at elevations between 100–800 m (Figure 3). These habitats are severely threatened regionally and globally due to extensive human modification of the landscape and, as a result, this species now exists primarily as isolated fragments. While *C. tumbesiana* is locally abundant at a few sites, it is currently known from less than 10 localities, several of which are within 5 km of each other.

Phenology. Flowering specimens have been collected in May and December to January; fruiting specimens have been collected in August and January to February. *Cynometra tumbesiana* is one of the few woody taxa in the dry forests that retain their leaves during the dry season.

Etymology. The specific epithet refers to the Tumbes region, where the type specimen was collected and where many of the known localities occur.
The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

Figure 11. Illustration of *Cynometra tumbesiana*. A Habit B leaflet base, showing laminar gland C flower D inflorescence rachis, showing bracts and bracteoles; pedicels removed to show structure E fruit, dissected to show single seed filling entire cavity. A–D Klitgaard et al. 507, K; B Neill & Núñez 10453, US.

Additional specimens examined. ECUADOR. El Oro: Bosque Petrificado Puyango, dirt track from information centre towards the camping area near Río Puyango, 03°52′30″S, 80°05′01″W, 450 m alt., 23 Aug 1996 [fr], B.B. Klitgaard et al. 325 (AAU
32

Notes. This species, restricted to the few remaining fragments of dry tropical forest in western Ecuador and the Tumbes region of Peru, has been mistakenly referred to as *Cynometra crassifolia* Benth. for many years. However, closer examination shows it to be quite distinct from this taxon. The type specimen of *C. crassifolia* was collected in Brazil by Portuguese naturalist Alexandre Rodrigues Ferreira during his exploration of the Amazonian region of Brazil from 1783–1792. His collections, along with many others housed at Lisbon, were expropriated by Étienne Geoffroy Saint-Hilaire and transferred to Paris during Napoleon’s occupation of Portugal. There, it was seen by George Bentham, who described *Cynometra crassifolia* in 1840. The primary differences between *C. tumbesiana* and *C. crassifolia* are found in the inflorescences: the racemes of *C. crassifolia* have larger flowers, longer pedicels and a more robust pedicel and rachis, but fewer individual flowers than those of *C. tumbesiana*. The flowers of *C. tumbesiana* are indeed relatively small compared to the other neotropical *Cynometra* species, though they are densely clustered on the short rachis of the inflorescence. The leaflets of *C. tumbesiana* are also less distinctly acuminate than those of *C. crassifolia* and have a less obtuse base; the base of the leaflet in *C. crassifolia* can appear to be almost truncate.

Some taxonomists have placed the Ecuadoran *Cynometra* within *C. bauhiniifolia* Benth., with a few treating *C. crassifolia* as a synonym of *C. bauhiniifolia* (Neill et al. 1999). In the first case, while *C. tumbesiana* does bear a passing resemblance to some forms of *C. bauhiniifolia*, the pod of *C. bauhiniifolia* is many times smaller and the surface of the valves is corky and deeply rugose. In the latter case, it is difficult to find justification for synonymising the two with the exception that *C. bauhiniifolia* has been a dumping ground for hard to place taxa within the genus and does occasionally occur in drier habitats. The leaflets, inflorescences and fruits all differ. Instead, the type material of *C. crassifolia* seems to be very similar to *C. longicuspis* Ducke, a widespread species from the moist lowland forests of Brazil.
The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

Figure 12. Photograph of the holotype of *Cynometra tumbesiana* (Klitgaard *et al.* 507, K).
Cynometra tumbesiana is morphologically and ecologically similar to C. oaxacana Brandegee from western and southern Mexico. The two can be distinguished by the narrower and more acuminate leaflets and larger fruits in C. tumbesiana. The inflorescences of C. oaxacana are also slightly more robust and have a more obvious pubescence. Both species are found in dry habitats (uncommon amongst the neotropical species of Cynometra), though C. tumbesiana is found in much drier sites.

Acknowledgements

I thank the directors, curators and support staff at the following herbaria for allowing me to view and borrow specimens: A, ATH, BM, BRI, CANB, F, IAN, INPA, K, MG, MO, NY, P, RB, SING and US. I am very grateful to my thesis advisors Vicki Funk (US) and Patrick Herendeen (CHC) for their suggestions to improve the manuscript. Kenneth Wurdack (US) and Warren Wagner (US) provided invaluable feedback during the preparation of this manuscript. I thank Alice Tangerini (US) and her students, Mattias Lanas and Katherine Rudebusch for providing detailed and illuminating illustrations of the new species. This project was conducted as part of my doctoral research at the Chicago Botanic Garden, Northwestern University and the National Museum of Natural History. The research was funded by grants and fellowships from the American Society of Plant Taxonomists, Garden Clubs of America, the Hunt Institute, the National Science Foundation (Doctoral Dissertation Improvement Grant DEB-1501199; co-PI Patrick Herendeen) and the Smithsonian Institution.

References

The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and diversification in the caesalpinioioid legumes. Botany 86(7): 697–718. https://doi.org/10.1139/B08-058

The rise of *Cynometra* and the fall of *Maniltoa*: a generic re-circumscription and...

Wright CH (1902) In: Johnston HH (Ed.) The Uganda protectorate (Vol 1). Hutchinson and Co, 325 pp.
Dichotomous keys to the species of Solanum L. (Solanaceae) in continental Africa, Madagascar (incl. the Indian Ocean islands), Macaronesia and the Cape Verde Islands

Sandra Knapp¹, Maria S. Vorontsova², Tiina Särkinen³

¹ Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
² Comparative Plant and Fungal Biology Department, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
³ Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK

Corresponding author: Sandra Knapp (s.knapp@nhm.ac.uk)

Academic editor: Leandro Giacomin | Received 9 March 2019 | Accepted 5 June 2019 | Published 19 July 2019

Abstract

Solanum L. (Solanaceae) is one of the largest genera of angiosperms and presents difficulties in identification due to lack of regional keys to all groups. Here we provide keys to all 135 species of Solanum native and naturalised in Africa (as defined by World Geographical Scheme for Recording Plant Distributions): continental Africa, Madagascar (incl. the Indian Ocean islands of Mauritius, La Réunion, the Comoros and the Seychelles), Macaronesia and the Cape Verde Islands. Some of these have previously been published in the context of monographic works, but here we include all taxa. The paper is designed to be used in conjunction with the web resource Solanaceae Source (www.solanaceaesource.org) and hyperlinks provide access to online descriptions, synonymy and images (where available) of each species. All taxa treated and specimens seen are included in searchable Suppl. material 1, 2.

Keywords

Africa, Aldabra, Azores, Canary Islands, Cape Verde, Comoros, cultivated plants, identification, keys, Madagascar, Madeira, Mauritius, La Réunion, Seychelles, Solanum, weeds
Introduction

Solanum L. (Solanaceae) is one of the largest of angiosperm genera (Frodin 2004) with ca. 1,200 species distributed worldwide with species on all continents except Antarctica. The greatest species diversity in the genus occurs in the Neotropics (see Bohs 2005), but significant diversity also occurs in the Old World, with Africa and Australia particularly important areas for diversification (see Vorontsova and Knapp 2016; Echeverría-Londoño et al. 2018). Due to its large number of species and the number of introductions and cultivated taxa, *Solanum* is often an identification challenge for non-specialists. Recent completion of several large monographic treatments of the *Solanum* of Africa (e.g. Vorontsova and Knapp 2016; Knapp and Vorontsova 2016; Särkinen et al. 2018) as part of the US National Science Foundation funded Planetary Biodiversity Inventory project “PBI Solanum” means we can now provide keys for the genus across the continent and for adjacent islands such as Madagascar and Macaronesia. Some of these have been published in the Open Access literature (e.g. Knapp 2013; Knapp and Vorontsova 2016; Särkinen et al. 2018), but the largest of these, treating the spiny solanums (Vorontsova and Knapp 2016) is not. Several species that are either naturalised (e.g. members of the Brevantherum Clade) or cultivated (tree tomatoes, pepinos, potatoes and tomatoes) in the region are also not treated as part of these monographic treatments, although complete species descriptions and photographs are provided on the web resource Solanaceae Source (www.solanaceaesource.org).

Here we provide dichotomous keys that include all groups and species (native, naturalised and widely cultivated; see Table 1 for species list) of *Solanum* occurring in continental Africa, Madagascar (incl. the Indian Ocean islands of Mauritius, La Réunion, the Comoros, and the Seychelles), Macaronesia and the Cape Verde Islands to facilitate identification across the region. Taxa occurring in each country in the region are shown in Table 2 and a map of *Solanum* diversity (all taxa) is presented in Figure 1. Keys to individual groups are also provided for the 135 *Solanum* species occurring in the region (see Table 1 and Appendix 1 for a species list). We hope that these keys will encourage collection and documentation of *Solanum* across Africa and uncover new distributions and perhaps new species for the region.

Materials and methods

We modified keys from published monographs for groups of *Solanum* from the botanical continent “Africa” as defined in the World Geographical Scheme for Recording Plant Distributions (WGSRPD; Brummitt 2001). This corresponds basically to the countries of the continent of Africa, but excludes the Sinai Peninsula (politically part of Egypt and in WGSRPD part of Western Asia). It also includes islands grouped as Macaronesia (Azores, Canary Islands, Madeira and the Cape Verde Islands) and Madagascar and other Indian Ocean islands east to Rodrigues.
Keys

Solanum can be divided into 13 major clades or monophyletic groups (Bohs 2005; Weese and Bohs 2007; Särkinen et al. 2013; see Figures 2 and 3 for photographs illustrating representative morphology of these groups in Africa). The largest monophyletic clade is the *Leptostemonum* clade, or the “spiny solanums”, which comprises approximately half of the species diversity of the genus; divisions within that clade have been defined by Stern et al. (2011), Vorontsova et al. (2013) and Aubriot et al. (2016). This group is rapidly diversifying in the Old World (Echeverría-Londoño et al. 2018), with most taxa occurring in the Old World belonging to a single monophyletic group. Previous treatments (e.g. Whalen 1984; Jaeger 1985; Jaeger and Hepper 1986) had suggested the African taxa were members of, or closely related to New World groups. More information on the phylogenetic relationships of African and Asian members of the *Leptostemonum* Clade can be found in Vorontsova et al. (2013) and Aubriot et al. (2016). Other clades with significant species diversity in Africa (as defined here) are the African non-spiny (ANS) and Normania Clades (both endemic to the region; see Bohs and Olmstead 2001) and the *Morelloid* Clade (with a number of widespread weedy taxa, see Särkinen et al. 2018). Other clades such as the Geminata, Brevantherum and Potato Clades are represented only by introduced or cultivated species. The Dulcamaroid Clade has a single species native to Mediterranean northern Africa and Macaronesia and two cultivated taxa that can become naturalised (Knapp 2013). In order to facilitate identification and to assist with the discovery of novelties from the region, we provide a key to the major groups (clades) of *Solanum* following the most recent phylogeny of the genus (Särkinen et al. 2013) and additional dichotomous keys to the species within each group. Groups are ordered as they occur as branches in the phylogeny of Särkinen et al. (2013).
Table 1. The 135 species of *Solanum* (native, naturalised and widely cultivated) occurring in Africa as defined by Brummitt (2001), with their places of original publication and clade membership as currently understood (Major Clades sensu Bohs 2005; minor clades are divisions within these sensu Bohs 2007; Stern et al. 2011; Vorontsova et al. 2103; Särkinen et al. 2015, 2018; Aubriot et al. 2016; Tepe et al. 2016).

<table>
<thead>
<tr>
<th>Species</th>
<th>Place of original publication</th>
<th>Major Clade</th>
<th>Minor clade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum aculeatissimum Jacq.</td>
<td>Collectanea [Jacquin] 1: 100. 1787 [1786].</td>
<td>Leptostemonum</td>
<td>Acanthophora</td>
</tr>
<tr>
<td>Solanum aethiopicum L.</td>
<td>Cent. Pl. 2: 10. 1756.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum agrarium Sendin.</td>
<td>Fl. Bras. (Martius) 10: 68, fig. 5, 32–33. 1846.</td>
<td>Leptostemonum</td>
<td>Gardneri</td>
</tr>
<tr>
<td>Solanum aldabrense C.H.Wright</td>
<td>Kew Bull. 1894: 149. 1894.</td>
<td>Leptostemonum</td>
<td>Old World</td>
</tr>
<tr>
<td>Solanum americana Mill.</td>
<td>Gard. Dict. ed. 8, no. 5. 1768.</td>
<td>Morelloid</td>
<td>Black nightshade</td>
</tr>
<tr>
<td>Solanum atropurpurea Schrank</td>
<td>Syll. Ratisb. 1: 200. 1824.</td>
<td>Leptostemonum</td>
<td>Acanthophora</td>
</tr>
<tr>
<td>Solanum betaceum Cav.</td>
<td>Anales Hist. Nat. 1: 44. 1799.</td>
<td>Cyphomandra</td>
<td>Pachyphylla</td>
</tr>
<tr>
<td>Solanum capense L.</td>
<td>Syst. ed. 10: 935. 1759.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum chrysanthis Schldl.</td>
<td>Linnaea 19: 304. 1847.</td>
<td>Leptostemonum</td>
<td>Torva</td>
</tr>
<tr>
<td>Solanum coquelinii Forsk.</td>
<td>Fl. Aegypt.-Arab. 47. 1775.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum cordatium Forsk.</td>
<td>Fl. Aegypt.-Arab. 47. 1775.</td>
<td>Leptostemonum</td>
<td>[not assigned]</td>
</tr>
<tr>
<td>Solanum diphyllum L.</td>
<td>Sp. Pl. 184. 1753.</td>
<td>Geminata</td>
<td></td>
</tr>
<tr>
<td>Solanum elaeagnifolium Cav.</td>
<td>Icon. 3: 22, tab. 243. 1795.</td>
<td>Leptostemonum</td>
<td>Elaeagnifolium</td>
</tr>
<tr>
<td>Solanum erranthum D.Don</td>
<td>Prodr. Fl. Nep. 96. 1825.</td>
<td>Brevantherum</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Place of original publication</td>
<td>Major Clade</td>
<td>Minor clade</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Solanum inamun L.</td>
<td>Sp. Pl. 188. 1753.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum inamun L.</td>
<td>Mant. 1: 46. 1767.</td>
<td>Leptostemonum</td>
<td>Old World-Tropical Asia</td>
</tr>
<tr>
<td>Solanum lycopersicum L.</td>
<td>Sp. Pl. 185. 1753.</td>
<td>Potato</td>
<td>Tomato</td>
</tr>
<tr>
<td>Solanum lycopersicum L.</td>
<td>Sp. Pl. 147. 1781.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum nava</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solanum napeo L.</td>
<td>Suppl. 147. 1781.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum melongena</td>
<td>Sp. Pl. 186. 1753.</td>
<td>Leptostemonum</td>
<td>Old World-Tropical Asia</td>
</tr>
<tr>
<td>Species</td>
<td>Place of original publication</td>
<td>Major Clade</td>
<td>Minor clade</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Solanum nigrum</td>
<td>Sp. Pl. 186. 1753.</td>
<td>Morelloid</td>
<td>Black nightshade</td>
</tr>
<tr>
<td>Solanum pompinellifolium</td>
<td>Lam. Cent. Pl. 1: 8, 1755.</td>
<td>Potato</td>
<td>Tomato</td>
</tr>
<tr>
<td>Solanum rigidum</td>
<td>Encycl. [J. Lamarck & al.] Suppl. 3: 775, 1814.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum roburum</td>
<td>H.L. Wendl. Flora 27: 784, 1844.</td>
<td>Leptostemonum</td>
<td>Erythrorrichum</td>
</tr>
<tr>
<td>Solanum sarrachoides</td>
<td>Sendtn. Fl Bras. (Martius) 10: 18, tab. 1, fig. 1-8, 1846.</td>
<td>Morelloid</td>
<td>Black nightshade</td>
</tr>
<tr>
<td>Solanum schabrum</td>
<td>Mill. Gard. Dict. ed. 8, no. 6, 1768.</td>
<td>Morelloid</td>
<td>Black nightshade</td>
</tr>
<tr>
<td>Solanum setaceum</td>
<td>Dammer Pflanzenw. Ost-Afrikas C (Engler): 33, 1895.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum sinbirdifolium</td>
<td>Lam. Encycl. 2: 25, 1794.</td>
<td>Leptostemonum</td>
<td>Sisybriifolium</td>
</tr>
<tr>
<td>Solanum tetense</td>
<td>Klotsch Naturw. Reise Mosambique (Peters) 1: 237, 1861.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum tomentosum</td>
<td>Lam. Sp. Pl. 188. 1753.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum torvum</td>
<td>Sw. Prodr. [O. P. Swartz] 47, 1788.</td>
<td>Leptostemonum</td>
<td>Torva</td>
</tr>
</tbody>
</table>
Dichotomous keys to the species of *Solanum* L. (Solanaceae) in continental Africa...

<table>
<thead>
<tr>
<th>Species</th>
<th>Place of original publication</th>
<th>Major Clade</th>
<th>Minor clade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum tuberosum L.</td>
<td>Sp. Pl. 185. 1753.</td>
<td>Potato</td>
<td>Solanum</td>
</tr>
<tr>
<td>Solanum usaramense Dammer</td>
<td>Pflanzenw. Ost-Africas C (Engler): 353. 1895.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
<tr>
<td>Solanum villosum Mill.</td>
<td>Gard. Dict. ed. 8, no. 2. 1768.</td>
<td>Morelloid</td>
<td>Black nightshade</td>
</tr>
<tr>
<td>Solanum virginianum L.</td>
<td>Sp. Pl. 187. 1753.</td>
<td>Leptostemonum</td>
<td>Old World-Tropical Asia</td>
</tr>
<tr>
<td>Solanum zanzeborene Varke</td>
<td>Linnaea 43: 326. 1882.</td>
<td>Leptostemonum</td>
<td>Old World-Africa</td>
</tr>
</tbody>
</table>

Table 2. Country distribution of *Solanum* species in Africa (as defined here); introduced (incl. cultivated) species in brackets (epithet); taxa not included in the keys because they are known from a singleton cultivated specimen, are in italic type. All records based on specimens examined by the authors with verified identities. The status of *S. torvum* is not completely clear, but it is most likely to be introduced from the New World, so is treated as that here; *S. americanum*, on the other hand, appears to have a worldwide distribution, so is treated as native. The occurrence of *S. rigidum* in Senegal is doubtful, the specimen is very old and the label may be in error. Cultivated plants are often not collected, so the absence of records of commonly cultivated crops (e.g. *S. lycopersicum*, *S. macrocarpon*, *S. tuberosum*) should not be interpreted as lack of occurrence, merely as lack of collections. *Solanum diphyllum* was recorded from Egypt by Fawzi and Habeeb (2016) with a verifiable photograph; this Mexican species is widely cultivated and easily naturalised and is likely to be spreading around the Mediterranean.
<table>
<thead>
<tr>
<th>Country</th>
<th>Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canary Islands (Spain)</td>
<td>americanum, (laxum), (lycopersicum), (mauritianum), nana, nigrum, (pseudocapsicum), (robustum), vespertilio, (wendlandii)</td>
</tr>
<tr>
<td>Central African Republic (CAR)</td>
<td>aculeastrum, (aculeatissimum), anguivi, cerasiferum, dasyphyllum, giganteum, (lycopersicum), macrocarpon, scabrum, (seafortianum), terminale, (torvum), (wrightii)</td>
</tr>
<tr>
<td>Chad</td>
<td>cerasiferum, forkalii, incanum, tarderemotum, villosum</td>
</tr>
<tr>
<td>Comoros (incl. Mayotte)</td>
<td>americanum, macrothyrum, richardi, scabrum, tarderemotum, terminale, (torvum)</td>
</tr>
<tr>
<td>Republic of the Congo</td>
<td>aculeastrum, anomalum, dasyphyllum, (lycopersicum), terminale, (torvum)</td>
</tr>
<tr>
<td>Cote d’Ivoire</td>
<td>(aculeatissimum), americanum, anguivi, anomalum, cerasiferum, dasyphyllum, (lycopersicum), scabrum, terminale, (torvum)</td>
</tr>
<tr>
<td>Djibouti</td>
<td>sonalene</td>
</tr>
<tr>
<td>Equatorial Guinea</td>
<td>(aculeatissimum), aethiopicum, americanum, anguivi, dasyphyllum, giganteum, (lycopersicum), pseudosinuum, scabrum, terminale, (torvum)</td>
</tr>
<tr>
<td>Eritrea</td>
<td>adoene, americanum, anguivi, campylacanthum, cerasiferum, coagulans, dasyphyllum, forkalii, glabratum, incanum, (lycopersicum), macacanthum, marginatum, melastomoides, (melongena), memphiticum, muricatum, scabrum, schimperianum, sonalene, tarderemotum, terminale, villosum</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>(aculeatissimum), adoene, americanum, anguivi, arundo, campylacanthum, capsicoide, cerasiferum, coagulans, cordatum, denvekense, forkalii, giganteum, glabratum, histrodum, indicum, jubaer, lancea, (lycopersicum), macacanthum, macrocarpon, marginatum, melastomoides, memphiticum, muricatum, pampasini, ruusoriense, schimperianum, sonalene, tarderemotum, terminale, tettense, villosum, (wrightii)</td>
</tr>
<tr>
<td>Gabon</td>
<td>aethiopicum, americanum, anguivi, anomalum, dasyphyllum, giganteum, macrocarpon, scabrum, terminale, (torvum), (wrightii)</td>
</tr>
<tr>
<td>Gambia</td>
<td>americanum, anguivi, cerasiferum, dasyphyllum</td>
</tr>
<tr>
<td>Ghana</td>
<td>(aculeatissimum), americanum, anguivi, anomalum, capsicoide, dasyphyllum, (erianthum), incanum, macrocarpon, (melongena), scabrum, tarderemotum, terminale, (torvum), (wrightii)</td>
</tr>
<tr>
<td>Guinea</td>
<td>(aculeatissimum), anguivi, (erianthum), scabrum, tarderemotum, terminale, (torvum), (wrightii)</td>
</tr>
<tr>
<td>Guinea-Bissau</td>
<td>americanum, anguivi, cerasiferum, dasyphyllum, terminale</td>
</tr>
<tr>
<td>Lesotho</td>
<td>(aculeatissimum), (chenopodioides), litchensteini, retroflexum, scabrum, sodomendes, tarderemotum</td>
</tr>
<tr>
<td>Liberia</td>
<td>(aculeatissimum), americanum, anguivi, anomalum, dasyphyllum, (lycopersicum), (mauritianum), scabrum, terminale, (torvum)</td>
</tr>
<tr>
<td>Libya</td>
<td>linnaeanum, nigrum, villosum, virginianum</td>
</tr>
<tr>
<td>Madeira (Portugal)</td>
<td>(chenopodioides), dulcamara, (laxum), linnaeanum, (lycopersicum), marginatum, nigrum, (pseudocapsicum), triquetrum, villosum</td>
</tr>
<tr>
<td>Mali</td>
<td>cerasiferum, dasyphyllum, forkalii, incanum, (lycopersicum), tarderemotum</td>
</tr>
<tr>
<td>Country</td>
<td>Species</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Mauritania</td>
<td>dasyphyllum, scabrum, villosum</td>
</tr>
<tr>
<td>Mauritius (incl. La Réunion)</td>
<td>americanum, (anguivi), (chenopodioides), erysthacanthum, insanus, (lycopersicum), (mauritianum), (melongena), richardi, tarderemotum, (tornum), violaceum</td>
</tr>
<tr>
<td>Morocco</td>
<td>dulcamara, elaeagnifolium, forskalii, herculaneum, (laciniateum), linnaeanum, nigrum, triflorum, villosum</td>
</tr>
<tr>
<td>Mozambique</td>
<td>aculeastrum, (aculeatissimum), aethiopicum, americanum, anguivi, aureitomentosum, campylancanthum, catombelene, dasyphyllum, giganteum, goetzei, langrocarpum, lichtensteinii</td>
</tr>
<tr>
<td></td>
<td>linnaeanum, litoraneum, retroflexum, richardi, scabrum, stipitatostellatum, tarderemotum, tettense, torreanum, (tornum), usuaramene, (viorum), villosum, zanzibarense</td>
</tr>
<tr>
<td>Namibia</td>
<td>burchellii, campylancanthum, capense, catombelene, elaeagnifolium, numule, lichtensteinii, (lyopersicum), pimpinellifolium, retroflexum, scabrum, (seaforthianum), supinum, tarderemotum, tettense</td>
</tr>
<tr>
<td>Niger</td>
<td>anguivi, forskalii, incanum, (lyopersicum), villosum</td>
</tr>
<tr>
<td>Nigeria</td>
<td>aculeastrum, (aculeatissimum), aethiopicum, americanum, anguivi, anomalum, ceraserifum, dasyphyllum, (erianthum), giganteum, incanum, (lyopersicum), macrocarpon, melongena, scabrum, terminale, (tornum), villosum, (wrightii)</td>
</tr>
<tr>
<td>Rwanda</td>
<td>aculeastrum, (aculeatissimum), anguivi, campylancanthum, cyaneopurpureum, dasyphyllum, giganteum, tarderemotum, terminale, witei</td>
</tr>
<tr>
<td>São Tome e Príncipe</td>
<td>americanum, capsicoides, (melongena), scabrum, terminale</td>
</tr>
<tr>
<td>Senegal</td>
<td>anguivi, ceraserifum, forskalii, incanum, (lyopersicum), rigidum ?, scabrum, tarderemotum</td>
</tr>
<tr>
<td>Seychelles</td>
<td>aldabrense, americanum, scabrum</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>aculeatissimum, americanum, anguivi, capsicoides, dasyphyllum, (erianthum), (lyopersicum), macrocarpon, (melongena), scabrum, tarderemotum, terminale, (tornum), (wrightii)</td>
</tr>
<tr>
<td>Somalia</td>
<td>arundo, campylancanthum, coagulans, condatum, cymbalariifolium, dasyphyllum, demerkeneke, forskalii, glabratum, hastifolium, incanum, jubae, melastomoides, (melongena), memphiticum, pampaniniii, schinpersianum, somalense, tarderemotum, tettense, villosum</td>
</tr>
<tr>
<td>South Africa</td>
<td>aculeastrum, (aculeatissimum), africanum, americanum, anguivi, burchellii, campylancanthum, capense, catombelene, (chenopodioides), (chrysotrichum), dasyphyllum, elaeagnifolium, giganteum, goetzei, lichtensteinii</td>
</tr>
<tr>
<td></td>
<td>linnaeanum, (mauritianum), (pseudo capsicum), retroflexum, rubetorum, (arrachoides), (seaforthianum), isizymbrifolium, sodomeoides, supinum, tarderemotum, terminale, tettense, tomentosum, torreanum, (tornum), triflorum, (viorum), (wrightii)</td>
</tr>
<tr>
<td>South Sudan</td>
<td>aculeastrum, (aculeatissimum), aethiopicum, anguivi, campylancanthum, ceraserifum, coagulans, dasyphyllum, giganteum, hastifolium, scabrum, tarderemotum, terminale</td>
</tr>
<tr>
<td>Sudan (incl. Hala’ib triangle)*</td>
<td>aculeastrum, adense, aethiopicum, campylancanthum, ceraserifum, coagulans, forskalii, hastifolium, incanum, macrocarpon, memphiticum, nigrium, scabrum, schinpersianum, somalense, tarderemotum, villosum</td>
</tr>
<tr>
<td>Swaziland</td>
<td>aculeastrum, campylancanthum, catombelene, retroflexum, (robustum), (seaforthianum), isizymbrifolium, torreanum</td>
</tr>
<tr>
<td>Tanzania</td>
<td>aculeastrum, (aculeatissimum), americanum, anguivi, arundo, (atropurpureum), aureitomentosum, (betaceum), campylancanthum, coagulans, cyaneopurpureum, dasyphyllum, demerkeneke, giganteum, goetzei, hastifolium, inaquinalium, langrocarpum, lanzae, lichtensteinii, (lyopersicum), macrocarpon, mauniae, (melongena), memphiticum, (pectinatum), phococarpum, pollhillii, richardi, (robustum), scabrum, schlepkeini, schumanniannum, (seaforthianum), setaceum, stipitatostellatum, taitense, tarderemotum, terminale, tettense, thomoniis, (tuberum), umaliataene, usambarense, usuaramene, villosum, (wendlandii), witei, (wrightii), zanzibarense</td>
</tr>
<tr>
<td>Togo</td>
<td>(aculeatissimum), aethiopicum, americanum, anguivi, anomalum, (melongena), scabrum, terminale, (tornum)</td>
</tr>
<tr>
<td>Tunisia</td>
<td>linnaeanum, (lyopersicum), nigrium, triflorum, villosum</td>
</tr>
<tr>
<td>Uganda</td>
<td>aculeastrum, (aculeatissimum), aethiopicum, americanum, anguivi, (betaceum), campylancanthum, ceraserifum, coagulans, cyaneopurpureum, dasyphyllum, giganteum, hastifolium, lanzae, macrocarpon, mammomum, mauniae, mauritianum, memphiticum, runioriense, scabrum, schumanniannum, (seaforthianum), tarderemotum, terminale, tettense, villosum, witei, (wrightii)</td>
</tr>
<tr>
<td>Zambia</td>
<td>aculeastrum, (aculeatissimum), anguivi, aureitomentosum, campylancanthum, (chrysotrichum), goetzei, lichtensteinii, (lyopersicum), retroflexum, richardi, scabrum, (seaforthianum), tarderemotum, terminale, tettense, (tornum), (tuberum), villosum, (wendlandii), (wrightii)</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>aculeastrum, (aculeatissimum), anguivi, aureitomentosum, (betaceum), campylancanthum, catombelene, giganteum, lichtensteinii, linnaeanum, (mauritianum), retroflexum, richardi, scabrum, (seaforthianum), tarderemotum, terminale, villosum, (wendlandii)</td>
</tr>
</tbody>
</table>

*Possession of the area known as the Hala’ib triangle is disputed between Egypt and Sudan, species occurring there are listed under both countries.
Figure 1. Heat map of *Solanum* diversity in Africa. Darker degree squares indicate greater species richness. The middle to high elevation regions of eastern Africa (Kenya/Tanzania) have the highest high species diversity, followed by secondary areas of species richness in the Ethiopian plateaus, dry areas of central Madagascar, South Africa and the area around Mount Cameroon. We have not analysed how collecting effort has influenced these patterns, but it is likely to be important. As the *Leptostemonum* Clade has the largest number of species in Africa, diversity in that clade drives species richness overall (see Vorontsova and Knapp 2016, figure 2). Map prepared by Sarah Ficinski.
Dichotomous keys to the species of *Solanum* L. (Solanaceae) in continental Africa...

Figure 2.

Four species have been recorded from this area, for which we have only seen single specimens, all of which are cultivated and not naturalised. *Solanum laciniatum* Aiton (Archaesolanum Clade), the kangaroo apple from Australia and New Zealand, has been recorded from Morocco, *S. agrarium* Sendtn. (Leptostemonum Clade, section *Acanthophora* Dunal sensu Nee 1979) from Brazil has only recently been collected in the Cape Verde Islands and *S. atropurpureum* Schrank (Leptostemonum Clade, section *Acanthophora* Dunal sensu Nee 1979) from Brazil and *S. pectinatum* Dunal (Leptostemonum Clade, section *Lasiocarpa* Dunal sensu Whalen et al. 1981) from Mexico have been recorded from Tanzania in a botanical garden. These singletons have been included in Table 1, but not in the keys below; descriptions should be checked if identification is ambiguous.

Each species name is hyperlinked to its page on Solanaceae Source (www.solanaceaesource.org) where photographs (if available), descriptions and other information can be found. An expanded key to all of the thirteen major clades of *Solanum* worldwide is in preparation (R. Hilgenhof and T. Särkinen, pers. comm.). Instructions on how to use Solanaceae source are included in the Materials and Methods.

Key to the groups of *Solanum* in continental Africa, Madagascar (incl. the islands of Réunion, the Comoros and the Seychelles), Macaronesia and the Cape Verde Islands

1a Trichomes of stems and leaves stellate or echinoid ... 2
1b Trichomes of stems and leaves simple (unbranched) or dendritically branched, never stellate or echinoid .. 3

2a Anthers ellipsoid in outline; inflorescences many times branched; branching dichasial; stems without prickles ... **Key 6. Brevantherum Clade**
2b Anthers tapering in outline; inflorescences branched or unbranched; branching monochasial; stems with or without prickles ..

3a Shrubs, small trees or woody vines .. 4
3b Herbs or if plants woody, only at the base; never true vines, occasionally scandent .. 9

4a Stems with hooked prickles; anthers tapering .. **Solanum wendlandii** Hook.f. (Wendlandii-Allophyllum Clade)
4b Stems without prickles; anthers ellipsoid ... 5

5a Small trees with foetid cordate leaves; flowers waxy pink or greenish white; anther connectives enlarged; fruit a large turbinate berry with fleshy pulp; cultivated tree tomato ..

5b Shrubs or woody vines; leaves, flowers and anther connectives not as above .

6
6a Small shrubs with paired (geminate) leaves; flowers nodding, white; fruit held on erect pedicels, orange; cultivated or occasionally naturalised in northern Africa..7
6b Woody vines or scendent shrubs; leaves, flowers and fruit not as above; continental Africa, Madagascar; or cultivated ...
7a Leaves lanceolate, with at least some branched trichomes on new growth; leaves of a pair more or less the same shape; inflorescence usually with 2 flowers; berry dark orange; cultivated “Jerusalem cherry”..............................

..Solanum pseudocapsicum L. (Geminata Clade)

7b Leaves ovate or elliptic, completely glabrous; leaves of a pair markedly different in shape; inflorescence with more than 2 flowers; berry pale orange; only recorded from Egypt Solanum diphyllum L. (Geminata Clade)

8a Base of pedicel enclosed in a small sleeve of rhachis tissue usually more than 0.5 mm long; Mediterranean northern Africa; Macaronesia; if in other parts of Africa, cultivated... Key 3. Dulcamaroid Clade
8b Base of pedicel peg-like, sometimes enclosed in a small sleeve of rhachis tissue, if so the sleeve less than 0.5 mm long; Continental tropical Africa; Madagascar; native plants Key 1. African non-spiny (ANS) Clade

9a Leaves pinnate or deeply pinnatifid...11
9b Leaves simple (at most the margins toothed) or at most ternate12
10a Fleshy prostrate herbs; leaves pinnatifid, the leaflets not distinct; inflorescences unbranched........................ Solanum triflorum Nutt. (Morelloid Clade)
10b Spreading herbs or herbaceous scramblers, not fleshy; leaves pinnate with distinct leaflets; inflorescences branched or less often unbranched.............................. Key 5. Potato Clade

11a Anthers dimorphic, of different sizes and two of the five with horn-like projections; Macaronesia and northern AfricaKey 2. Normania Clade
11b Anthers equal in size and shape, if unequal only slightly so; widespread or cultivated...

12a Trichomes simple with a single long terminal cell (bayonet hairs); fruit a large greenish berry with purple stripes (more than 3 cm diameter), with abundant solid mesocarp; herbaceous vine.. Solanum muricatum Aiton (Potato Clade)
12b Trichomes simple or branched; fruit variously coloured (usually less than 1 cm in diameter), with juicy mesocarp; annual or short-lived perennial herbs ... Key 4. Morelloid Clade

Key 1. African non-spiny (ANS) Clade (descriptions Knapp and Vorontsova 2016)
1a Leaves glabrous on both surfaces...2
1b Leaves with at least some pubescence on either surface (this sometimes sparse along veins and midrib) ...10
2a Inflorescence few-flowered, unbranched (at most furcate in \textit{Solanum betroka}) .. 3
2b Inflorescence many flowered, usually many times branched 5
3a Flowers appearing fasciculate and axillary; corolla usually somewhat campanulate; fruit orange; South Africa \textit{Solanum guineense} L.
3b Flowers not appearing fasciculate; corolla stellate, the petals spreading or reflexed; fruit colour green, black or not known, never orange; Madagascar.... 4
4a Leaves clustered on short shoots; calyx lobes deltate, not divided to base; dry forests .. \textit{Solanum betroka} D’Arcy & Rakot.
4b Leaves not clustered on short shoots; calyx lobes long triangular, divided to the base; wet forests \textit{Solanum truncicola} D’Arcy & Rakot.
5a Flowers or fruits (or pedicel scars) in tightly packed groups on individual branches (these sometimes very short and the inflorescence appearing spicate) ... \textit{Solanum terminale} Forssk.
5b Flowers spaced on the open inflorescence, often unevenly so 6
6a Leaves clustered on short shoots........ \textit{Solanum betroka} D’Arcy & Rakot.
6b Leaves spaced along the stem .. 7
7a Anthers opening by pores that elongate with age; mountains of continental Africa.. \textit{Solanum runorsiense} C.H.Wright
7b Anthers opening by delineated pores that do not elongate with age; Madagascar .. 8
8a Leaves fleshy, thick and coriaceous, the venation not visible in dry specimens; fruit with thick pericarp (woody?) .. \textit{Solanum myrsinoides} D’Arcy & Rakot.
8b Leaves membranous to coriaceous, not markedly thick and fleshy, the venation visible in dry specimens; fruit with thin pericarp, the seeds visible through the berry wall .. 9
9a Petioles with long, simple trichomes (these not extending to the lamina); seeds 4–8 per berry; inflorescence axis thin and delicate... \textit{Solanum trichopetiolatum} D’Arcy & Rakot.
9b Petioles glabrous or with minute dendritic trichomes; seeds 20–40 per berry; inflorescence axis robust.. \textit{Solanum madagascariense} Dunal
10a Leaf trichomes simple (unbranched) .. 11
10b Leaf trichomes branched (dendritic to echinoid) 16
11a Inflorescence axis unbranched, the flowers closely spaced..................... 12
11b Inflorescence axis branched, often many times so 13
12a Leaves clustered along stem; fruit orange; South Africa \textit{Solanum guineense} L.
12b Leaves spaced along shoots; fruit purple or black; Madagascar \textit{Solanum truncicola} D’Arcy & Rakot.
13a Flowers or fruits (or pedicel scars) in tightly packed groups on individual branches (these sometimes very short and the inflorescence appearing spicate) ... \textit{Solanum terminale} Forssk.
13b Flowers spaced on the open inflorescence, often unevenly so 14
14a Stems strongly quadrangular; at least some leaves with shallow lobes; plants of seashore and dune habitats......................... **Solanum africanum** Mill.

14b Stems terete; leaves not lobed; plants of forests and forest edges15

15a Leaf pubescence very sparse, confined to the midrib or near the petiole; flowers not heterostylos; Madagascar ... **Solanum trichopetiolatum** D’Arcy & Rakot.

15a Leaf pubescence variable, not very sparse, along veins and lamina; flowers heterostylos; mountains of continental Africa ... **Solanum runsoriense** C.H.Wright

16a Abaxial leaf surfaces with tufts of trichomes in the vein axils (domatia) 17

16b Abaxial leaf surfaces with trichomes on lamina and/or along veins, not with prominent tufts in the vein axils (domatia) ...

17a Inflorescence many times branched, open and with many flowers (more than 20); calyx lobes broadly deltate; petioles to 4 cm long, thin and flexuous; Mayotte (Comoros) **Solanum macrothyrsum** Dammer

17b Inflorescence furcate, more congested and with fewer flowers (fewer than 20); calyx lobes deltate; petioles to 2.5 cm long, thicker; Madagascar18

18a Calyx lobes 0.8–2 mm long; inflorescences with 10–16 flowers

18b Calyx lobes 4–6 mm long; inflorescences with 3–10 flowers **Solanum ivobibe** D’Arcy & Rakot.

19a Calyx lobes 0.8–2 mm long; inflorescences with 10–16 flowers

19b Calyx lobes 4–6 mm long; inflorescences with 3–10 flowers **Solanum sambiranense** D’Arcy & Rakot.

20a Anther pores lengthening to slits with age; flowers heterostylos; leaves evenly distributed along branches; mountains of continental Africa **Solanum runsoriense** C.H.Wright

20b Anther pores not lengthening to slit with age; flowers not heterostylos; leaves usually at least somewhat clustered on short shoots; Madagascar21

21a Leaves densely pubescent with golden (when dry) loosely dendritic trichomes; flowers more than 2 cm in diameter; anthers 4–6 mm long; widespread in Madagascar .. **Solanum imamense** Dunal

21b Leaves sparsely pubescent with white (when dry) congested dendritic trichomes; flowers 2 cm in diameter or less; anthers 3.5–4 mm long; dry forests of southern Madagascar **Solanum betroka** D’Arcy & Rakot.

22a Inflorescence unbranched, with few flowers; pedicels 1.8–4.5 cm long

22b Inflorescence many times branched, with many flowers; pedicels 0.8–1.2 cm long ... **Solanum humblotii** Bitter

23a Anther pores lengthening to slits with age; flowers heterostylos; pedicels with pubescence like the inflorescence rhachis; mountains of continental Africa .. **Solanum runsoriense** C.H.Wright

23b Anther pores not lengthening to slit with age; flowers not heterostylos; pedicels always glabrous; Madagascar **Solanum madagascariense** Dunal
Dichotomous keys to the species of Solanum L. (Solanaceae) in continental Africa...

Key 2. Normania clade (descriptions on Solanaceae Source)

1a Leaves shallowly lobed, pubescent with long, tangled eglandular trichomes; anthers tapering, horned near the base, tightly connivent; seeds more than 5 mm long; fruit a dry berry; Mediterranean *Solanum herculeum* Bohs

1b Leaves simple or ternate, glabrous or pubescent, but the trichomes not long and tangled, glandular; anthers markedly horned, spreading; seeds less than or equal to 5 mm long; fruit a brightly coloured, juicy berry; laurisylva forest in Macaronesia.. 2

2a Leaves simple or ternate, the base truncate or cordate if leaves unlobed; anthers yellow, horned in lower third; berry bright red; Madeira *Solanum trisectum* Dunal

2b Leaves simple, the base cordate; anthers black, horned about halfway up from the base; berry orange or red; Tenerife, Canary Islands............................ *Solanum nava* Webb & Berthel.

Key 3. Dulcamaroid clade (descriptions in Knapp 2013 and on Solanaceae Source)

1a Buds turbinate and strongly pointed; petals strongly reflexed, with shiny green dots at the base of each; anthers tightly connivent with “glue”; fruit a shiny red berry, often ellipsoid; native plants in Mediterranean northern Africa... *Solanum dulcamara* L.

1b Buds rounded, often somewhat inflated; petals spreading, without shiny green dots; anthers not tightly connivent with “glue”; fruit red or black, globose; cultivated plants, occasionally naturalised throughout the region 2

2a Flowers white; anthers on equal filaments; leaves with axillary tufts of trichomes on the lower surfaces (domatia), usually simple, occasionally pinnatifid; berry (very rarely) black .. *Solanum laxum* Spreng.

2b Flowers purple; one filament slightly longer than the other 4; leaves completely glabrous, pinnatifid, rarely simple; berry bright shiny red *Solanum seaforthianum* Andrews

Key 4. Morelloid clade (descriptions in Särkinen et al. 2018 and on Solanaceae Source)

1a Leaves shallowly to deeply pinnatifid *Solanum triflorum* Nutt.

1b Leaves entire to sinuate-dentate ... 2

2a Glandular trichomes present (e.g. along stems, petioles and leaves), plants usually sticky to touch when fresh.. 3

2b Glandular trichomes absent (e.g. along stems, petioles and leaves), plants not sticky to touch when fresh .. 14

3a Anthers less than 1.8 mm long... 4
3b Anthers more than or equal to 1.8 mm long

4a Inflorescences with 10–40 flowers; pedicels spaced 1–2 mm apart, sharply bent at the base (near articulation point) in flower and fruit.

.. Solanum tarderemotum Bitter

4b Inflorescences with 2–5(-10) flowers; pedicels spaced 0–1 mm apart, nodding, erect or spreading in flower and fruit, reflexed and slightly curved in some species in fruit but never in flower.

5a Calyx lobes 1–1.5 mm long in flower; fruiting calyces not accrescent, the tube remaining 1–1.7 mm long and lobes 1–1.5 mm long; fruit black when ripe, not markedly shiny, with a glaucous cast.

.. Solanum retroflexum Dunal

5b Calyx lobes 1.5–2.5 mm long in flower; fruiting calyces accrescent, the tube 3–4 mm long and lobes 2.5–8.0 mm long; fruit green when ripe, shiny.

6a Leaf bases attenuate to cuneate; inflorescences mostly intermodal, with 4–8(-10) flowers; pedicels spaced 0.3–1 mm apart; calyx lobes 1.7–2.5 mm long; corollas with yellow-green central eye with black-purple V-shaped margins; anthers 1.0–1.4 mm long; berries dark green to green-brown marbled with white lines, becoming usually translucent and glossy, lower half of berries covered with enlarged calyces but berry mostly visible; seeds brown; stone cells (1-)2–3, these 0.5 mm in diameter; northern Africa.

.. Solanum nitidibaccatum Bitter

6b Leaf bases truncate; inflorescences mostly leaf-opposed, with 2–5(-7) flowers; pedicels spaced 0(-1) mm apart; calyx lobes 1.5–2.0 mm long; corolla with yellow-green or translucent basal star without black-purple colouration; anthers 1.2–2.0 mm long; berries pale green, shiny becoming dull, opaque, usually completely enveloped by enlarged calyces; seeds pale yellow; stone cells 4–6, these (0.5-)0.8–1 mm in diameter; only known from South Africa.

.. Solanum sarrachoides Sendtn.

7a Anthers more than or equal to 2.8 mm long.

7b Anthers less than 2.8 mm long.

8a Inflorescences with bracteoles present in most individuals; buds narrowly ellipsoid; corolla deeply stellate, the lobes narrowly lanceolate; berries with more than 30 stone cells.

.. Solanum triflorum Nutt.

8b Inflorescences never with bracteoles; buds globose, ovoid or narrowly ellipsoid; corolla rotate-stellate, the lobes long- triangular with rounded tips; berries with (0-)2–4 stone cells.

.. Solanum memphiticum Forssk.

9a Calyx lobes appressed to spreading in fruit, never strongly reflexed.

9b Calyx lobes strongly reflexed in fruit.

10a Calyx accrescent in fruit, calyx tube 3–4 mm long and lobes 2.5–8 mm long.

.. Solanum sarrachoides Sendtn.

10b Calyx not accrescent in fruit, calyx tube 1–2 mm long and lobes 1–1.5 mm long.
11a Buds ellipsoid; calyx tube 1.5–2.0 mm long, lobes 1–1.5 mm long, elongate-deltate with rounded tips; fruiting pedicels persist when fruits mature and fall off; Cameroon line (Cameroon and Equatorial Guinea), above 2,000 m elevation .. *Solanum pseudospinosum* C.H.Wright

11b Buds subglobose; calyx tube 0.8–1.0 mm long, lobes 0.5–0.8 mm long, triangular with rounded to acute tips; fruiting pedicels generally do not persist and fall off with maturing fruits; in continental Africa only in South Africa and around the Mediterranean ... *Solanum nigrum* L.

12a Leaves rhomboidal to lanceolate; filaments 1.2–1.5 mm long, anthers 1.3–1.8(-2) mm long; seeds 1.6–1.8 mm long and 1.3–1.5 mm wide.......................... *Solanum retroflexum* Dunal

12b Leaves broadly to narrowly ovate to elliptic; filaments 0.5–1.3 mm long; anthers 1.8–2.5 mm long; seeds 1.8–2.2 mm long and 1.5–1.7 mm wide.... 13

13a Calyx with broad and relatively transparent sinuses, lobes elliptic to triangular, rounded at tip; free part of the filaments 1.0–1.3 mm long; mature berries slightly ellipsoid, shiny yellow, orange or red; stone cells always absent *Solanum villosum* Mill.

13b Calyx with narrow, sharp triangular sinuses, lobes deltate with acute or rounded tips; free part of the filaments 0.5–0.7 mm long; mature berries round, dull black or green; stone cells 0–4; in Africa only in South Africa and around the Mediterranean ... *Solanum nigrum* L.

14a Anthers less than 1.8 mm long .. 15

14b Anthers more than or equal to 1.8 mm long .. 17

15a Pedicels spaced 1–2 mm apart, pedicels sharply bent at the base (near the articulation point) in flower and fruit *Solanum tarderemotum* Bitter

15b Pedicels spaced 0–0.5 mm apart, pedicels nodding, erect or spreading in flower and fruit... 16

16a Leaves with entire margins, occasionally sinuate-dentate; calyx lobes 0.3–0.5 mm long in flower, 1(-2) mm in fruit; mature fruits black, the surface very shiny ... *Solanum americanum* Mill.

16b Leaves shallowly toothed, occasionally entire; calyx lobes 1.0–1.5 mm long in flower, 1.5–2 mm in fruit; mature fruits purple-black or green, the surface dull ... *Solanum retroflexum* Dunal

17a Anthers less than 2.8 mm long... 18

17b Anthers more than or equal to 2.8 mm long .. 27

18a Berries without stone cells... 19

18b Berries with 2–22 stone cells .. 24

19a Pedicels persisting and not dropping with mature fruits; calyx lobes in fruit mostly strongly reflexed ... 20

19b Pedicels dropping with mature fruits; calyx lobes in fruit appressed to slightly spreading, rarely strongly reflexed ... 22
20a Leaves rhomboidal to lanceolate; filaments 1.2–1.5 mm long, anthers 1.3–1.8(-2) mm long; seeds 1.6–1.8 mm long and 1.3–1.5 mm wide............
... Solanum retroflexum Dunal

20b Leaves broadly to narrowly ovate to elliptic; filaments 0.5–1.3 mm long; anthers 1.8–2.5 mm long; seeds 1.8–2.2 mm long and 1.5–1.7 mm wide....21

21a Calyx with broad and relatively transparent sinuses, lobes elliptic to triangular, rounded at tip; filaments 1.0–1.3 mm long; mature berries slightly ellipsoid, shiny yellow, orange or red; stone cells always absent
... Solanum villosum Mill.

21b Calyx with narrow, sharp triangular sinuses, lobes deltate with acute tips; filaments 0.5–0.7 mm long; mature berries round, dull black or green; stone cells generally absent (2–4 stone cells common in Asian material)..............
... Solanum nigrum L.

22a Buds elongate-oblong; fruiting peduncles strongly deflexed at the base (bent downwards at junction with the stem) Solanum chenopodioides Lam.

22b Buds ellipsoid to subglobose; fruiting peduncles straight or ascending23

23a Pedicels spaced 1–2 mm apart, sharply bent at the base (near the articulation point) in flower and fruit; seeds 1.5–2 mm long and 1–1.5 mm wide.............
... Solanum tarderemotum Bitter

23b Pedicels spaced 0–0.7 mm apart, straight, spreading or reflexed in flower and fruit; seeds 1.8–2 mm long and 1.5–1.6 mm wide....... Solanum nigrum L.

24a Prostrate herb; leaves narrowly elliptic to lanceolate, base strongly attenuate; inflorescences with 1–5 flowers; pedicels stout and spreading; calyx lobes linear-oblong with rounded apices; mountains of Ethiopia
... Solanum hirtulum C.H.Wright

24b Upright or spreading herb; leaves broadly ovate to elliptic, base acuminate, acute, obtuse, truncate to abruptly attenuate; inflorescences with 2–40 flowers; pedicels thinner, spreading to strongly reflexed; calyx lobes triangular, broadly deltoid or ovate with acute to rounded apices...............................25

25a Pedicels strongly bent downwards at the base (near articulation point) in flower and fruit... Solanum tarderemotum Bitter

25b Pedicels spreading, stout or pendent in flower, occasionally recurved in fruit but never strongly bent downwards at the base26

26a Inflorescences unbranched or more often branched, often with small leaves (bracteoles?); calyx lobes broadly deltate to mere enations of the rim; style exserted 1.0–1.5 mm beyond anther cone; mature berries 3–4(-5) mm in diameter, dull yellowish brown Solanum umalilaense Manoko

26b Inflorescences unbranched, never with small leaves; calyx lobes triangular; style exserted 0–1 mm beyond anther cone; mature berries 6–10 mm in diameter, dull black............................... Solanum nigrum L.

27a Inflorescences with bracteoles present in most individuals; buds narrowly elliptic; berries with more than 30 stone cellsSolanum triflorum Nutt.

27b Inflorescences never with bracteoles; buds globose, ovoid or narrowly ellipsoid; berries with 0–14 stone cells.........................28
28a Berries with 2–14 stone cells; leaf base strongly attenuate

...
Solanum hirtulum C.H.Wright

28b Berries without stone cells; leaf base not strongly attenuate

......................

29a Buds elongate-oblong; calyx lobes broadly deltate to triangular with acute tips; fruiting peduncles strongly bent at the base near junction with the stem; fruiting pedicels thin, reflexed and slightly recurved; seeds 1.2–1.4 mm long and 1.0–1.2 mm wide

...
Solanum chenopodioides Lam.

29b Buds globose-subglobose; calyx lobes broadly deltate with rounded tips; fruiting peduncles straight; fruiting pedicels stout, erect and spreading; seeds 2–2.8 mm long and 1.5–1.8 mm wide

...
Solanum scabrum Mill.

Key 5. Potato clade (descriptions on Solanaceae Source)

1a Flowers yellow; anthers tightly connivent and tapering to a beak-like tip; fruit a bright red berry; cultivated tomatoes

...
Solanum lycopersicum L.

1b Flowers white or purple; anthers ellipsoid, not tapering to a beak-like tip; fruit green or whitish green (often with purple stripes)

...
Solanum pimpinellifolium L.

2a Corolla lobes deltate to triangular; anther cone stout, the style included; berry usually more than 1 cm in diameter (often much larger), fewer than 20 per infructescence; leaflets with serrate margins; cultivated tomato

...
Solanum muricatum Aiton

2b Corolla lobes narrowly triangular; anther cone long and narrow, the style exserted; berry less than 1 cm in diameter, more than 20 per infructescence; leaflets with entire margins; cultivated currant tomato

...
Solanum pimpinellifolium L.

3a Leaves at most ternate, usually simple; fruit a berry more than 3 cm in diameter; plant not bearing underground tubers; cultivated pepino

...
Solanum tuberosum L.

3b Leaves pinnate; fruit a berry less than 3 cm in diameter; plant bearing underground tubers; cultivated potato

...
Solanum tuberosum L.

Key 6. Brevantherum clade (descriptions on Solanaceae Source)

1a Young flower buds turbinate; calyx densely pubescent within over entire surface; young stems sulcate; axillary leaves absent

...
Solanum erianthum D.Don

1b Young flower buds oblong to orbicular; calyx lobes pubescent within only in distal quarter; young stems terete; axillary leaves common

...
Solanum mauritianum Scop.
KEY 7. *LEPTOSTEMONUM* CLADE (descriptions in Vorontsova and Knapp 2016 and on Solanaceae Source)

1a Young stems and petioles noticeably winged; mature fruit densely pubescent; invasive plant in Tanzanian highlands and South Africa

... *Solanum robustum* H.Wendl.

1b Young stems and petioles not markedly winged (terete or slightly ridged); mature fruit glabrous; native or invasive, widespread

... 2

2a Flowers with stamens of differing lengths (due either to unequal anthers or unequal filaments or both); arid eastern and north-eastern Africa

... 3

2b Flowers with all stamens equal in length; widespread

... 8

3a Corolla strongly zygomorphic, with the two lower lobes much larger; flowers often enantiostyloous; Canary Islands

... 4

3b Corolla only weakly zygomorphic, the lower lobes somewhat but not markedly larger; flowers not enantiostyloous; continental Africa

... 5

4a Leaves narrowly elliptic to lanceolate; calyx lobes linear and awn-like; corolla always 5-merous; ripe berry orange; Gran Canaria... *Solanum lidii* Sunding

4b Leaves ovate; calyx lobes linear; corolla often 4-merous; ripe berry yellow or yellowish green; Tenerife and Gran Canaria *Solanum vespertilio* Aiton

5a Leaves orbicular to reniform, 1.2–2.5 cm long, wider than long; petioles longer than leaves; rare in north-eastern Somalia

... 6

5b Leaves ovate to elliptic or lanceolate, 2–14 cm long, longer than wide; petioles shorter than leaves; arid eastern and north-eastern Africa

... 6

6a Stem prickles dense, acicular, less than 0.5 mm wide at base, pale yellow; fruit fully concealed by the accrescent calyx

... *Solanum coagulans* Forssk.

6b Stem prickles absent or sparse, if present wider than 1 mm at base, yellow to orange or brown; fruit at least partly exposed

... 7

7a Leaves subentire to lobed; anthers of equal length; seeds very dark brown to almost black

... *Solanum melastomoides* C.H.Wright

7b Leaves entire; one anther much longer than the others; seeds dull yellow to orange-brown

... *Solanum somalense* Franch.

8a Flower one per inflorescence, peduncle and rhachis absent; corolla pentagonal, lobed for 1/4–1/3 of the way to the base, 0.9–1.3 cm in diameter; southern Africa

... *Solanum supinum* Dunal

8b Flower usually more than one per inflorescence, peduncle and/or rhachis present in at least some inflorescences; corolla usually stellate, lobed for more than 1/3 of the way to the base or, if lobed, for 1/4–1/3 of the way to the base then corolla of long-styled flowers broader than 1.3 cm in diameter; widespread

... 9

9a Trichomes on young stems and adaxial (upper) surfaces of the leaves simple only, never stellate

... 10

9b Trichomes on young stems and adaxial (upper) surfaces of the leaves stellate... 13
Dichotomous keys to the species of *Solanum* L. (Solanaceae) in continental Africa...

10a Flowers pale bluish purple; anthers 8–12.5 mm; fruit globose or extended into a “nipple” .. *Solanum mammosum* L.

10b Flowers white or greenish white; anthers 5–7.5 mm; fruit globose11

11a No stellate hairs anywhere on the plant; fruit bright orange at maturity; seeds winged, 4–6 mm long................................. *Solanum capsicoides* All.

11b Stellate hairs almost always present on the abaxial (lower) surface of the leaves; fruit yellow at maturity; seeds not winged, 1.8–2.8 mm long....................

12a Leaf lobes 2–3 pairs, extending 1/3–1/2 distance to the midvein; calyx lobes 5–6.5 mm long, often caudate *Solanum aculeatissimum* Jacq.

12b Leaf lobes 3–5 pairs, extending less than 1/3 of the distance to the midvein; calyx lobes 0.8–2 mm long, acute *Solanum viarum* Dunal

13a Leaves entire, 3–10 times longer than wide; shrubs erect, 1–6 m tall; stem trichomes with partly fused rays; southern Madagascar

13b Leaves entire or lobed, 1–3(8) times longer than wide; shrubs erect, scandent or climbing, 0.2–6 m tall; if leaves entire and more than 3 times longer than wide, then shrub less than 1 m tall and not in southern Madagascar; stem trichomes with free rays ..

14a Leaves 9–13(20) cm long; corolla 2–3.1 cm in diameter; juvenile branches with dark red prickles; south-eastern Madagascar..............................

14b Leaves 1.5–7 cm long; corolla 1–2 cm in diameter; juvenile branches with grey-brown or red-brown prickles; south-western Madagascar...........

15a Leaf blades 3–7 cm long, concolorous to weakly discolorous, yellow-green...

15b Leaf blades 1.5–3(4) cm long, strongly discolorous, green-brown adaxially and glaucous abaxially.............................. *Solanum heinianum* D’Arcy & Keating

16a Prickles and leaf venation noticeably dark orange to red, contrasting with the yellow-green to red-green leaf surface; southern Madagascar

16b Prickles and leaf venation not a contrasting colour, yellow to green or red-brown; widespread or naturalised..17

17a Mature fruit green, never developing to bright yellow, orange or red; plants weakly andromonoecious; fruits 1–1.5 cm in diameter

17b Mature fruit yellow, orange or red; plants hermaphroditic or andromonoecious, fruits 0.5–6 cm in diameter, if andromonoecious, then fruits more than 1.5 cm in diameter..

18a Shrub to tree 1.5–9 m tall; young stems and leaves densely ferruginous pubescent; trichomes on the inflorescences and pedicels not glandular; prickles straight to slightly curved.......................... *Solanum chrysotrichum* Schltdl.

18b Shrub to 3 m; young stems and leaves pubescent green to brownish; trichomes on the inflorescences and pedicels glandular; prickles curved........

... *Solanum torvum* Sw.
19a Mature fruit yellow or greenish yellow, 1.5–5(6) cm in diameter; corolla on long-styled flowers (1.3)2–6 cm in diameter; plants mostly andromonoecious ..20

19b Mature fruit orange to red, 0.5–1.2(1.7) cm in diameter; if mature fruit orange (1)1.5–2.5(5) cm in diameter, the plant cultivated; corolla on long-styled flowers 0.8–3 cm in diameter; plants mostly hermaphroditic45

20a Cultivated tree 5–10 m tall with copious flowers; corolla bright purple aging to white with both colours usually present in an inflorescence, 5.5–8 cm in diameter ..Solanum wrightii Benth.

20b Wild plants or cultivated vegetables, less than 6 m tall; corolla white to mauve or purple with the colour constant within each individual, 1.6–6 cm in diameter ..21

21a Petiole usually decurrent, leaf bases attenuate (cuneate); trichomes on abaxial leaf surface (if present) stalked with 4(5) rays ..22

21b Petiole never decurrent, leaf bases cordate to cuneate; trichomes on abaxial leaf surface (if present) sessile or stalked with 6–16 rays23

22a Plant clearly stellate-pubescent and armed, drying yellow-green to red-brown; wild plant ..Solanum dasyphyllum Schumach, & Thonn.

22b Plant usually glabrous and unarmed, drying a distinctive red-brown colour; cultivated plant ..24

23a Climbers or scandent plants ..24

23b Plants erect or rarely semi-scandent ..27

24a Prickles on young stems straight ..25

24b Prickles on young stems strongly curved ...26

25a Prickles pale straw-yellow, to 20 mm long; petiole with sessile stellate trichomes; corolla ca. 2.5 cm in diameter; style strongly curved; Mediterranean northern Africa (adventive from Asia)Solanum virginianum L.

25b Prickles yellow (but not straw-coloured) or brown; petiole trichomes usually stalked; corolla 3.5–5 cm in diameter; style straight; southern KenyaSolanum nigriviolaceum Bitter

26a Corolla white, 1.3–1.6 cm in diameter; seeds 5.5–6 mm long; Kenyan mountains ..Solanum agnewiorum Voronts.

26b Corolla mauve to purple, 3.5–6 cm in diameter; seeds 3–4 mm long; eastern and southern Africa, MadagascarSolanum richardii Dunal

27a Calyx inflated, fully covering the berry at maturity; young stems densely covered with straight prickles; northern Madagascar ..Solanum mahoriense D’Arcy & Rakot.

27b Calyx not inflated, the berry exposed at maturity; young stems prickly or unarmed; widespread ..28

28a Corolla lobed for more than half way to the base; shrubs or trees up to 6 m; variety of habitats ..29

28b Corolla lobed for half way to the base or less; small shrubs up to 2 m; weeds of open arid environments or cultivated crops; relatives of the eggplant35
29a Leaves 8–18 cm long, strongly discolorous; young fruits plain green; seeds 3.5–4.5 mm long; wet upland habitats ..30
29a Leaves 2–8 cm long, concolorous or sometimes discolorous; young fruits striped in different shades of green; seeds 2.2–3.5 mm long; arid upland or lowland habitats ..32
30a Fruit globose, never apiculate, 1.4–1.7 cm in diameter, 4–10 per infructescence; young stems with yellow (when dry) long-stalked trichomes, the stalks 1–3 mm .. Solanum thomsonii C.H.Wright
30b Fruit turbinate or cone-shaped, sometimes globose, usually somewhat apiculate, 2.8–5 x 1.8–4.5 cm, 1–3(5) per infructescence; young stems usually lacking long-stalked yellow (when dry) trichomes ..31
31a Fruit distinctly turbinate or cone-shaped, 2.8–3.7 x 1.8–2.2 cm; leaves on fertile branches elliptic and subentire, 6–8 x 2.5–4 cm, ca. 2.5 times longer than wide; 2100–3000 m elevation Solanum phoxocarpum Voronts.
31b Fruit globose, usually somewhat apiculate, 3–5 x 2–4.5 cm; leaves on fertile branches ovate(elliptic) and lobed(subentire), 8–15 x 6–12 cm, 1.5–2 times longer than wide; 1200–2100(3200) m elevation .. Solanum aculeastrum Dunal
32a Prickles straight or occasionally curved; petioles 1/3–2/3 as long as the leaf blades .. Solanum polhillii Voronts.
32b Prickles on young stems strongly curved; petioles less than 1/3 of the leaf blade length ..33
33a Leaves entire, densely stellate-pubescent on both sides; eastern and north-eastern African highlands Solanum dennekense Dammer
33b Leaves lobed, adaxially glabrescent; eastern and north-eastern Africa34
34a Leaves 2–4 cm long; curved prickles on young stems 5–10 mm long; eastern and north-eastern Africa Solanum arundo Matthei
34b Leaves 6–8 cm long; curved prickles on young stems 1–3 mm long; coastal Kenya, rare Solanum malindiense Voronts.
35a Fruit with soft pericarp, in a variety of shapes and colours, edible; common fasciation in the flowers (e.g. increase in the number of flower parts up to 8), inflated ovaries; cultivated species Solanum melongena L.
35a Fruit spherical, yellow, with comparatively hard pericarp, not edible; flowers 5-merous; wild plants ..36
36a Leaves lobed with primary and secondary lobes, the primary lobes extending 2/3–3/4 of the distance to the midvein and secondary lobes always present; southern Africa and northern African coasts around the Mediterranean Solanum linnaeanum Hepper & P.M-L.Jaeger
36b Leaves entire or lobed, lobes extending up to 2/3 of the distance to the mid-vein, secondary lobes usually not present; widespread ...37
37a Leaf margins and venation nearly white and contrasting with greenish red-brown adaxial leaf surface; trichomes on the abaxial surface of the leaves with 10–17 rays; Ethiopian highlands.

Solanum marginatum L.f.

37b Leaf margins and venation the same colour as the rest of the leaf blade; trichomes on the abaxial surface of the leaves with 5–12(15) rays; widespread

38a Leaf lobes apically obtuse to acute, sometimes rounded, sometimes with secondary lobes; lobes 1/4–2/3 of the distance to the midvein; leaves and young stems glabrescent to moderately pubescent

38b Leaf lobes apically rounded, sometimes obtuse, never with secondary lobes; lobes up to 1/3(1/2) of the distance to the midvein; leaves and young stems usually densely pubescent

39a Calyx lobes on long-styled flowers 7–10 mm long, ovate and foliaceous, apically obtuse; South Africa.

Solanum umtuma Voronts. & S.Knapp

39b Calyx lobes on long-styled flowers 4–7 mm long, deltate or long-triangular apically acuminate; northern Africa and Cape Verde Islands

40a Calyx lobes on long-styled flowers 4–7 mm long, deltate, ca. 1/6 as long as the fruit at maturity; continental Africa north of the equator

Solanum cerasiferum Dunal

40b Calyx lobes on long-styled flowers 6–7 mm long, long triangular, 1/2 to 1/3 as long as the fruit at maturity; Cape Verde Islands (Senegal?)

Solanum rigidum Lam.

41a Prickles straight; corolla on long-styled flowers 1.8–2.5 cm in diameter; anthers ca. 4.5 mm long; Madagascar; Mauritius, Réunion

Solanum insanum L.

41b Prickles curved or straight; corolla on long-styled flowers 2.5–4.5 cm in diameter; anthers 5–9 mm long; widespread

42a Leaves usually entire, sometimes lobed; trichomes on the abaxial leaf surface sessile or with stalks up to 0.1 mm long; fruits 1.5–3 cm diameter

Solanum campylacanthum Hochst. ex A.Rich.

42b Leaves lobed; trichomes on the abaxial leaf surface with stalks up to 0.5(1) mm long; fruits 2.5–4.5 cm diameter

43a Leaves velvety red-brown adaxially; calyx lobes on long-styled flowers ovate to oblong, foliaceous, 7–10 mm long

Solanum aureitomentosum Bitter

43b Leaves yellow-green to green-brown adaxially; calyx lobes on long-styled flowers deltate, usually not foliaceous, 2.5–6 mm long

44a Leaves concolorous to weakly discolorous, indumentum yellowish; leaves ca. 1.5 times longer than wide; young stems terete to angular; north-eastern Africa

Solanum incanum L.

44b Leaves strongly discolorous, indumentum dirty greenish brown adaxially and whitish yellow abaxially; leaves 1.5–2.5 times longer than wide; young stems with somewhat raised longitudinal ridges; southern Africa

Solanum lichtensteinii Willd.
Dichotomous keys to the species of *Solanum* L. (Solanaceae) in continental Africa...

45a Leaves on fertile branches with distinct lobes, at least some of the lobes longer than 1/4 of the distance from the midvein to the leaf edge....................... 46
45b Leaves on fertile branches entire or subentire or with some shallow lobes no longer than 1/4 of the distance from the midvein to the leaf edge............. 89
46a Leaves more than 3 times longer than wide.................................. 47
46b Leaves 1–3 times longer than wide... 49
47a Plant unarmed or prickles straight, orange to red; trichomes on the abaxial surfaces of the leaves with (9)12–14 rays...... *Solanum elaeagnifolium* Cav.
47b Plant densely armed with curved broad-based pale-yellow prickles; trichomes on the abaxial surfaces of the leaves, if present, with 0–8 rays
48a Anthers 2.5–3.2 mm long; trichomes anywhere on the plant with 0–4 rays; South Africa.. *Solanum sodomaeodes* Kuntze
48b Anthers 5–6.5 mm long; trichomes anywhere on the plant with 5–8 rays; north-eastern Africa................................. *Solanum glabratum* Dunal
49a Leaves with at least some secondary lobing present 50
49b Leaves lobed once only .. 51
50a Flowers 3–7 per inflorescence, mauve to purple; anthers 5.5–7 mm long; South Africa.. *Solanum rubetorum* Dunal
50b Flowers 6–50 per inflorescence, white; anthers 9–10 mm long; invasive in South Africa and Kenya ... *Solanum sisymbriifolium* Lam.
51a No prickles visible anywhere on the plant.................................. 52
51b At least some prickles visible on the plant 57
52a Plant scandent or scrambling, sometimes erect; anthers (4)5–6.5 mm long; inland eastern Africa *Solanum cyaneopurpureum* De Wild.
52b Plant erect; anthers 2.3–5(8.5) mm long; widespread........................ 53
53a Corolla 1.5–3 cm in diameter; mauve or purple; southern Africa, Indian Ocean islands................................. *Solanum anguivi* Lam.
53b Corolla 0.9–1.5 cm in diameter; white (only occasionally pale violet); widespread on continent or cultivated... 54
54a Fruiting pedicels deflexed, curved; anthers 3.5–5.2 mm long; South Africa and Namibia.............................. *Solanum burchellii* Dunal
54b Fruiting pedicels straight and spreading; anthers 4.5–8.5 mm long; Mauritius and Réunion................................. *Solanum violaceum* Ortega
55a Inflorescences 2.5–6 cm long, with 5–22 flowers *Solanum anguivi* Lam.
55b Inflorescences 1–2.5 cm long, with 1–4(10) flowers........................ 56
56a Leaf blades 5–18 cm long, petioles 1–4 cm long; plant cultivated for leaves or fruits, widespread................................. *Solanum aethiopicum* L.
56b Leaf blades 3–8 cm long, petioles 0.5–1.5 cm long; wild plant in southern Africa.. *Solanum catombelense* Peyr.
57a Prickles on young stems predominantly curved........................ 58
57b Prickles on young stems predominantly straight, sometimes straight and reflexed.. 70
58a Young prickles and indumentum red; scandent shrubs; Madagascar59
58b Young prickles and indumentum yellowish, green or brown; erect or scan-
dent shrubs; widespread (mainland Africa, rarely Madagascar, Indian Ocean
Islands) ..60
59a Young stems with a dense covering of long-stalked trichomes and prickles of
different lengths; 1000–3000 m elevation... **Solanum myoxotrichum** Baker
59b Young stems with a sparse or dense covering of sessile or short-stalked tri-
chomes of uniform lengths; 0–1000 m elevation ..
...**Solanum erythracanthum** Dunal
60a Stem trichomes with stalks 0.1–0.4 mm long; anthers 6–10 mm long; coastal
eastern Africa... **Solanum usaramense** Dammer
60b Stem trichomes sessile or the stalks to 0.1 mm long; anthers 3–8.5 mm long;
widespread ...
61
61a Plants of the Indian Ocean islands (Mauritius, Réunion, Aldabra)62
61b Plants of continental Africa ..
62a Fruiting pedicels straight and spreading; corolla to 3 cm in diameter; petiole
not winged from decurrent leaf base; Mauritius and Réunion**Solanum violaceum** Ortega
62b Fruiting pedicels curved and deflexed; corolla to 2 cm in diameter; petiole
slightly winged from decurrent leaf base; Aldabra (Seychelles).....................
..**Solanum aldabrense** C.H.Wright
63a Calyx in flower 7–9 mm long, apically caudate; calyx in fruit 10–12 mm
long; trichomes with midpoints much longer that the rays; Tanzanian high-
lands, rare ..
Solanum inaequiradians Bitter
63b Calyx in flower 2–6 mm long, apically acute to acuminate or rarely caudate;
calyx in fruit less than 10 mm long; trichomes with the midpoints short than
or equal to the rays; widespread ...64
64a Plant always erect; leaves discolorous; corolla 0.8–1.5 cm in diameter, lobed
for 1/2–2/3(3/4) of the way to the base..
64b Plant often scandent or semi-scandent; leaves usually concolorous; corolla
(1)1.5–2.5 cm in diameter, lobed for 2/3 of the way to the base or more ..66
65b Inflorescences 2.5–6 cm long, with 5–22 flowers; polymorphic weed across
highland areas of Africa and Madagascar ..**Solanum anguivi** Lam.
65a Inflorescences 1–2.5 cm long, with 1–4 flowers; southern Africa
..**Solanum catombelense** Peyr.
66a Prickles 3–5 mm long; leaf blades 1.5–2.5(9) cm long, leaf base narrow-cune-
ate to attenuate; South Africa and Namibia ...**Solanum capense** L.
66b Prickles 1–4(7) mm long. Leaf blades (1)2.5–14 cm long, leaf base cuneate to
truncate; widespread ..
67a Calyx 2–4 mm long in flower ...
67b Calyx 4–6 mm long in flower ...

Dichotomous keys to the species of *Solanum* L. (Solanaceae) in continental Africa...

68a Prickles on young stems 1.5–2(3) mm long; leaves 2.5–5.5 cm long; seeds 2.5–3.5 mm long; inland eastern Africa. **Solanum cyaneopurpureum** De Wild.

68b Prickles on young stems 2–4 mm long. Leaves 3–14 cm long; seeds 1.8–2.5 mm long; coastal eastern Africa. **Solanum zanzibarense** Vatke

69a Leaves drying yellow-green; petiole 1/4–1/3 of the leaf length; eastern and north-eastern Africa. **Solanum hastifolium** Hochst. ex Dunal

69b Leaves drying dark red-brown; petiole 1/3–1/2 of the leaf length; southern Africa. **Solanum torreanum** A.E.Gonç.

70a Inflorescence with more than 10 flowers ... 71

70b Inflorescence with 10 or fewer flowers .. 74

71a Leaves 1–4(6) cm long; corolla 1.3–2.4 cm in diameter; seeds almost black; north of the equator. **Solanum forskalii** Dunal

71b Leaves (5)7–25 cm long; corolla 0.7–1.5 cm in diameter; seeds yellow to orange-brown; widespread .. 72

72a Inflorescences 1–2.5 cm long, peduncle 0–2 mm long; trichomes on the young stems with (5)8–20 rays; western Africa. **Solanum anomalum** Thonn.

72b Inflorescences 2.5–8 cm long, peduncle 2–30 mm long; trichomes on the young stems with 6–8 rays; widespread 73

73a Inflorescences branched many times (more than once); Kenya and Tanzania .. **Solanum usambarense** Bitter

73b Inflorescences unbranched or forked; widespread. **Solanum anguivi** Lam.

74a Young prickles almost filiform and easily bendable like bristles, with no firm prickles anywhere on the plant; eastern African savannah .. 75

74b Young prickles sturdy when touched; widespread 75

75a Calyx lobes oblong, foliaceous, apically obtuse; lowland eastern Africa, rare. **Solanum lamprocarpum** Bitter

75b Calyx lobes deltate, sometimes long-ovate or narrow-obleng, not clearly foliaceous, apically acute to acuminate; widespread .. 76

76a Calyx 7–12 mm long in flower .. 77

76b Calyx 2–7 mm long in flower .. 80

77a Prickles on young branches 8–16 mm long; leaves elliptic; Ethiopian highlands .. **Solanum macracanthum** A.Rich.

77b Prickles on young branches 2–7 mm long; leaves ovate; Tanzania, South Africa and Madagascar .. 78

78a Corolla lobed for 3/4 of the way to the base or more; trichomes on the young stems with midpoints (0.5)1.5–2.5(3) mm long; Tanzanian highlands .. **Solanum inaequiradians** Bitter

78b Corolla lobed for 1/2–2/3 of the way to the base; trichomes on the young stems with midpoints 0.15–5 mm long; South Africa and Madagascar .. **Solanum myoxotrichum** Baker

79a Young stems with a dense covering of long-stalked trichomes and prickles of different lengths; Madagascar. **Solanum tomentosum** L.
80a Young prickles and indumentum red; pedicels (1)1.5–4 cm long; Madagascar ... 81
80b Young prickles and indumentum pale yellow to brown or purple, never red; pedicels 0.2–1(1.4) cm long; mainland Africa, rarely in Madagascar 82
81a Young stems with a dense covering of long-stalked trichomes and prickles of different lengths; 1000–3000 m elevation... *Solanum myoxotrichum* Baker
81b Young stems with a sparse or dense covering of sessile or short-stalked trichomes of uniform lengths; 0–1000 m elevation ..

... *Solanum erythracanthum* Dunal
82a Corolla lobed for 3/4 of the way to the base or deeper; plants scrambling or climbing, sometimes erect.................. 83
82a Corolla lobed for 1/2–2/3 of the way to the base; plants erect, sometimes scandent ...
83a Prickles on young stems 2–4 mm long; eastern African coastal areas

... *Solanum zanzibarense* Vatke
83b Prickles on young stems (3)4–13 mm long; arid environments across continental Africa ... 84
84a Prickles reflexed; seeds nearly black................. *Solanum forskalii* Dunal
84b Prickles perpendicular to the stem; seeds pale yellow to orange-brown 85
85a Leaves 1–2 times longer than wide; leaf lobes to 2/3 of the distance to the midvein; leaves concolorous to strongly discolorous; north-eastern Africa.....

.. *Solanum adoense* Hochst. ex A. Rich.
85b Leaves 1.5–3 times longer than wide; leaf lobes to 1/2 of the distance to the midvein; leaves concolorous; South Africa

.. *Solanum humile* Dunal
86a Petiole 1/3–2/3 as long as the leaf blade; South Africa ..

.. *Solanum tomentosum* L.
86b Petiole 1/6–1/3 as long as the leaf blade; widespread.. 87
87a Leaf blades (5)11–25 cm long; inflorescence with 5–22 flowers; common variable highland weed widespread across Africa... *Solanum anguivi* Lam.
87b Leaf blades 1.7–9 cm long; inflorescence with 1–6 flowers; southern Africa...

.. 88
88a Leaves elliptic; corolla 1.5–2.2 cm in diameter, mauve to purple............

.. *Solanum burchellii* Dunal
88b Leaves ovate, sometimes oblong; corolla 0.9–1.3 cm in diameter, usually white ... *Solanum catombelense* Peyr.
89a At least some inflorescences branched several to many times; inflorescence with (10)20–150 flowers; erect shrubs to small trees 90
89b Inflorescences unbranched or forked; inflorescence with 1–10(20) flowers; scrambling, scandent or erect shrubs................................. 98
90a Plants with at least some visible prickles or bristles............................ 91
90b Plants with no prickles or bristles visible .. 95
91a Young stems with soft or thin bristles... 92
91b Young stems with firm deltate prickles.. 93
Dichotomous keys to the species of *Solanum* L. (Solanaceae) in continental Africa...

92a Stem bristles soft and white, 0.4–0.7 mm wide at base; leaves ca. 2 times longer than wide; 1500–1800 m elevation; Tanzania.......................... *Solanum schliebenii* Werderm.

92b Stem bristles erect purple-black or brown, 0.2–0.4 mm wide at base; leaves 2.5–3.5 times longer than wide; 1800–2600 m elevation; eastern Africa...

93a Leaf blades 12–40 cm long, whitish grey underneath with trichomes, falling as white powder when touched; inflorescences with 30–150 flowers; anthers 2.5–3 mm long... *Solanum giganteum* Jacq.

93b Leaf blades 4–10(16) cm long, yellow-green, brown or rarely whitish grey underneath, trichomes not falling when touched; inflorescences with 10–30 flowers; anthers 3.5–6 mm long.................................

94a Leaf base cuneate to acuminate; anthers 3.5–4 mm long; stem trichomes with midpoints 0.4–1(2) mm long; Democratic Republic of the Congo, Rwanda, Uganda, Tanzania; rare.. *Solanum wittei* Robyns

94b Leaf base rounded, rarely cuneate; anthers 4–6 mm long; stem trichomes with midpoints 0.05–0.2 mm long; widespread. *Solanum tettense* Klotzsch

95a Leaves elliptic, with 8–12 pairs of primary veins, 2.5–3.5 times longer than wide..

95b Leaves ovate, sometimes elliptic, with 4–8 pairs of primary veins, 1.5–2.5(3) times longer than wide...

96a Leaves concolorous; calyx lobes 2–4(5) mm long, long-acuminate; Sudan, Eritrea, Ethiopia, Somalia, 1500–2800 m elevation...

96b Leaves discolorous; calyx lobes 1–2 mm long, obtuse to acute, sometimes acuminate; southern Ethiopia, Somalia and further south, 650–1900 m elevation..

97a Leaf base cuneate to acuminate; anthers 3.5–4 mm long; stem trichomes with midpoints 0.4–1(2) mm long; Democratic Republic of the Congo, Rwanda, Uganda, Tanzania; rare.. *Solanum wittei* Robyns

97b Leaf base rounded, rarely cuneate; anthers 4–6 mm long; stem trichomes with midpoints 0.05–0.2 mm long; widespread, common.................................

98a Plants with no prickles visible ..

98b Plants with at least some visible prickles. ...

99a Leaves 3–8 times longer than wide, narrow-elliptic or lanceolate, rarely narrow-ovate..

99b Leaves 1–3 times longer than wide, orbicular, ovate, obovate, elliptic or ob-long..
100a Corolla 0.9–1.5 cm in diameter; trichomes on young stems with ca. 8 rays; native plant in eastern and north-eastern Africa, black cotton soils \textit{Solanum lanzae} J.-P. LeBrun & Stork

100b Corolla 2.5–3(5) cm in diameter; trichomes on young stems with 10–14(16) rays; weed in southern Africa and Mediterranean ... \textit{Solanum elaeagnifolium} Cav.

101a Leaves less than 1.5 times longer than wide, orbicular, ovate or obovate; arid north-eastern Africa ... \textbf{102}

101b Leaves more than 1.5 times longer than wide, ovate, elliptic or oblong; widespread ... \textbf{103}

102a Erect shrub to small tree 1.5–4 m tall; leaves and flowers readily deciduous, so stems often bare; seeds orange-brown \textit{Solanum jubae} Bitter

102a Scandent to erect shrub up to 1 m tall; leaves and flowers not readily deciduous, stems not bare; seeds dark brown to almost black .. \textit{Solanum cordatum} Forssk.

103a Leaf base attenuate; corolla lobed for ca. 3/4 of the way to the base; trichomes on the young stems with 10–20 rays ... \textbf{104}

103a Leaf base cuneate, rounded or truncate, rarely attenuate; corolla lobed for 1/2–2/3 of the way to the base; trichomes on the young stems with 6–9(12) rays .. \textbf{105}

104a Petioles 1/3–2/3 as long as the adult leaves; flowers 4–8 per inflorescence; seeds 2.8–3.5 mm long; Angola \textit{Solanum pauperum} C.H.Wright

104b Petioles 1/6–1/4 as long as the adult leaves; flowers 8–15 per inflorescence; seeds 3.6–4.8 mm long; eastern and south-eastern Africa .. \textbf{105}

105a Calyx lobes 5–10 mm long in flower, foliaceous, ovate to elliptic; leaf apex rounded, sometimes obtuse; arid north-eastern Africa \textit{Solanum pampaninii} Chiov.

105b Calyx lobes 1–4.5 mm long in flower, not clearly foliaceous, deltate; leaf apex acute or obtuse, sometimes rounded; widespread \textbf{106}

106a Scandent shrub; inflorescences 3.5–7 cm long; young stems with stalked trichomes, the stalks 0.1–0.4 mm long; eastern African highlands .. \textit{Solanum stipitatostellatum} Dammer

106b Erect herb or shrub; inflorescences 1–3.5 cm long; young stems with sessile or stalked trichomes, the stalks up to 0.15 mm long; widespread \textbf{107}

107a Fruit (1)1.5–2.5(5) cm in diameter; plant cultivated for leaves or fruits; widespread and common in western and eastern Africa \textit{Solanum aethiopicum} L.

107b Fruit (0.7)0.75–1.1 cm in diameter; wild plant in southern Africa \textbf{108}

108a Leaves elliptic; corolla 1.5–2.2 cm in diameter, mauve to purple \textit{Solanum burchellii} Dunal

108b Leaves ovate, sometimes oblong; corolla 0.9–1.3 cm in diameter, usually white .. \textit{Solanum catombelense} Peyr.
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>109a</td>
<td>Prickles on young stems predominantly curved</td>
<td>110</td>
</tr>
<tr>
<td>109b</td>
<td>Prickles on young stems predominantly straight, sometimes straight and reflexed</td>
<td>125</td>
</tr>
<tr>
<td>110a</td>
<td>Most leaves on reproductive branches less than two times longer than wide</td>
<td>111</td>
</tr>
<tr>
<td>110b</td>
<td>Most leaves on reproductive branches two times longer than wide or longer</td>
<td>115</td>
</tr>
<tr>
<td>111a</td>
<td>Corolla lobed for ca. 3/4 of the way to the base or deeper; seeds dark brown to almost black; continental Africa north of the equator</td>
<td>112</td>
</tr>
<tr>
<td>111b</td>
<td>Corolla lobed for ca. 2/3 of the way to the base; seeds yellow to orange-brown; continental Africa south of the equator</td>
<td>113</td>
</tr>
<tr>
<td>112a</td>
<td>Inflorescences with 1(2) flowers; trichomes on young stem with 12–18 rays</td>
<td>Solanum cordatum Forssk.</td>
</tr>
<tr>
<td>112b</td>
<td>Inflorescences with (1)2–20 flowers; trichomes on young stem with 6–10 rays</td>
<td>Solanum forskalii Dunal</td>
</tr>
<tr>
<td>113a</td>
<td>Leaves drying yellowish green; anthers 3–4 mm long; southern Africa</td>
<td>Solanum litoraneum A.E.Gonç.</td>
</tr>
<tr>
<td>113b</td>
<td>Leaves drying reddish brown; anthers (4.5)5.5–8 mm long; Madagascar</td>
<td>114</td>
</tr>
<tr>
<td>114a</td>
<td>Young stems with a dense covering of long-stalked trichomes and prickles of different lengths; 1000–3000 m elevation</td>
<td>116</td>
</tr>
<tr>
<td>114b</td>
<td>Young stems with a sparse or dense covering of sessile or short-stalked trichomes of uniform lengths; 0–1000 m elevation</td>
<td>Solanum myoxotrichum Baker</td>
</tr>
<tr>
<td>115a</td>
<td>Plant erect, 0.4–1.5 m tall; corolla 0.9–1.4 cm in diameter; anthers 2.5–3.5 mm long</td>
<td>116</td>
</tr>
<tr>
<td>115b</td>
<td>Plant scandent, sometimes erect; corolla (1.2)1.5–3 cm in diameter; anthers 4–8 mm long</td>
<td>117</td>
</tr>
<tr>
<td>116a</td>
<td>Inflorescence 3–4(6) cm long; trichomes on abaxial surfaces of the leaves with stalks 0.15–0.4 mm long; eastern Africa</td>
<td>Solanum mauense Bitter</td>
</tr>
<tr>
<td>116b</td>
<td>Inflorescence 1–2.5 cm long; trichomes on abaxial surfaces of the leaves with stalks 0–0.15 mm long; southern Africa</td>
<td>Solanum catombelense Peyr.</td>
</tr>
<tr>
<td>117a</td>
<td>Calyx 7–9 mm long at anthesis, the lobes caudate; trichomes on young stems with midpoints (0.5)1.5–2.5(3) mm long; Tanzanian highlands</td>
<td>118</td>
</tr>
<tr>
<td>117b</td>
<td>Calyx 2–6 mm long at anthesis, the lobes acute to acuminate; trichomes on young stems with midpoints 0–1.5 mm long; widespread</td>
<td>Solanum inaequiradians Bitter</td>
</tr>
<tr>
<td>118a</td>
<td>Leaves 3–6 times longer than wide, the bases attenuate; arid eastern and north-eastern Africa</td>
<td>Solanum glabratum Dunal</td>
</tr>
<tr>
<td>118b</td>
<td>Leaves 2–3 times longer than wide, the bases cuneate to cordate; eastern Africa and Madagascar</td>
<td>119</td>
</tr>
<tr>
<td>119a</td>
<td>Corolla (1.8)2–3 cm in diameter; anthers (5.5)6–10 mm long</td>
<td>120</td>
</tr>
<tr>
<td>119b</td>
<td>Corolla 1–2(2.4) cm in diameter; anthers 4–6(7) mm long</td>
<td>122</td>
</tr>
</tbody>
</table>
120a Inflorescences with 1–2(5) flowers; young stems with trichomes sessile or stalked, the stalks up to 0.2 mm long; Madagascar.................................

..**Solanum erythracanthum** Dunal

120b Inflorescences with 3–10 flowers; young stems with trichomes always stalked, the stalks 0.1–0.4 mm long; eastern Africa...............................121

121a Leaves 3–8 cm long, densely stellate-pubescent on both sides; eastern African coasts .. **Solanum usaramense** Dammer

121b Leaves 6–13 cm long, adaxially glabrescent; eastern African mountains

..**Solanum stipitatostellatum** Dammer

122a Leaves apically rounded, with thick-stalked trichomes on the adaxial surface; inflorescence with 1–2(3) flowers; eastern Africa..... **Solanum taitense** Vatke

122a Leaves apically acute to obtuse, sometimes rounded, without thick-stalked trichomes on the adaxial surface; inflorescence with (1)2–20 flowers123

123a Leaves with 2–3 pairs of primary veins; seeds dark brown to almost black; continental Africa north of the equator.................**Solanum forskalii** Dunal

123b Leaves with 4–6 pairs of primary veins; seeds yellow to orange-brown; continental Africa south of the equator or near the equator124

124a Prickles usually under 2 mm long; leaves 2.5–5.5 cm long; trichomes on the leaves and stems with stalks ca. 0.1 mm long; inland eastern Africa

..**Solanum cyaneopurpureum** De Wild.

124b Prickles over 2 mm long; leaves 3–14 cm long; trichomes on the leaves and stems sessile or with stalks under 0.1 mm long; coastal eastern Africa

..**Solanum zanzibarense** Vatke

125a Leaves more than two times longer than wide ...126

125b Leaves less than two times longer than wide..130

126a Corolla 2.5–3(5) cm in diameter; anthers 6–10 mm long; invasive in southern Africa and around the Mediterranean **Solanum elaeagnifolium** Cav.

126b Corolla 0.9–2.3 cm in diameter; anthers 2.5–6 mm long; Ethiopia, Tanzania or further south ...127

127a Prickles on young stems 8–16 mm long; calyx 7–12 mm long at anthesis; Ethiopia..**Solanum macracanthum** A.Rich.

127b Prickles on young stems 1–6 mm long; calyx 2.5–7 mm long at anthesis; Tanzania or further south...128

128a Plant scrambling shrub; leaves almost glabrous, trichomes on the leaves with up to 4 rays; Tanzanian coastal forest, rare (possibly extinct)

..**Solanum ruvu** Voronts.

128b Plant erect; leaves stellate-pubescent, trichomes on the abaxial sides of the leaves with 17–15 rays; southern Africa ..129

129a Leaves elliptic; corolla 1.5–2.2 cm in diameter, mauve to purple..............

..**Solanum burchellii** Dunal

129b Leaves ovate, sometimes oblong; corolla 0.9–1.3 cm in diameter, usually white ..**Solanum catombelense** Peyr.
Dichotomous keys to the species of *Solanum* L. (Solanaceae) in continental Africa...

130a Leaves on reproductive branches less than 2 cm long.........................131
130b Leaves on reproductive branches more than 2 cm long........................134
131a Leaves and flowers predominantly on short shoots, few on main stems; corolla lobed for 1/2–2/3 of the way to the base; seeds yellow to orange-brown; southern Madagascar ...132
131b Leaves and flowers predominantly on main stems, few on short shoots; corolla lobed for ca. 3/4 of the way to the base; seeds dark brown to almost black; continental Africa north of the equator..133
132a Calyx lobes fused in fruit, ca. 10 mm long, fully covering the mature fruit; leaves ovate ..*Solanum toliaraea* D’Arcy & Rakot.
132b Calyx lobes free in fruit, 4–5 mm long, the mature fruit at least partly exposed; leaves orbicular, elliptic or ovate*Solanum batoides* D’Arcy & Rakot.
133a Inflorescences with 1(2) flowers; trichomes on young stem with 12–18 rays ...*Solanum cordatum* Forssk.
133b Inflorescences with (1)2–20 flowers; trichomes on young stem with 6–10 rays ...*Solanum forskalii* Dunal
134a Leaves elliptic..135
134a Leaves ovate...136
135a Leaves drying yellow-green; anthers 3.5–5.2 mm long; southern Africa
...*Solanum burchellii* Dunal
135b Leaves drying reddish brown; anthers 5.5–8 mm long; Madagascar
...*Solanum erythracanthum* Dunal
136a Anthers 3.2–3.5 mm long; southern Africa............*Solanum tomentosum* L.
136b Anthers 4.5–8 mm long; widespread..137
137a Calyx lobes 3–7 mm long at anthesis ..138
137b Calyx lobes 0.5–3 mm long at anthesis ...139
138a Leaves yellow-green; trichomes on the abaxial sides of the leaves with midpoints 1–2 mm long; Tanzania.................*Solanum inaequiradians* Bitter
138b Leaves reddish; trichomes on the abaxial sides of the leaves with midpoints to 0.5 mm long; Madagascar.........................*Solanum myoxotrichum* Baker
139a Leaves 6–13 cm long; prickles on young stems 1–2 mm long; highland eastern Africa...*Solanum stipitatostellatum* Dammer
139b Leaves 1–5(6) cm long; prickles on young stems 2–10 mm long; continental Africa, north of the equator or Madagascar140
140a Pedicels 0.2–1 mm long; seeds almost black; continental Africa, north of the equator ...*Solanum forskalii* Dunal
140b Pedicels 1.5–2(2.5) cm long; seeds dull yellow to orange-brown; Madagascar ...*Solanum erythracanthum* Dunal
Acknowledgements

We thank the curators of the herbaria cited in the Appendix 2 for permission to examine specimens in their care; Michael Gilbert for assisting with key reformatting; Sarah Ficinski, Morvah George, Juana de Egea, Samantha Murphy, Xavier Aubriot and David Spooner all greatly helped in the databasing of specimens and in assessing distributions; comments from Leandro Giacomin, Roy Gereau and Gloria E. Barboza greatly improved the manuscript; much of the field and herbarium work was funded by the National Science Foundation Planetary Biodiversity Inventory program grant “PBI Solanum – a worldwide treatment” (DEB-0316614) to SK; other herbarium visits were funded by the SYNTHESYS Project http://www.synthesys.info/ which was financed by European Community Research Infrastructure Actions under the FP6 and FP7 “Structuring the European Research Area” Programme; Natural History Museum Special Funds awards; and the Royal Society through travel grants.

References

Supplementary material 1

List of *Solanum* species occurring in Africa as defined in this paper
Authors: Sandra Knapp, Maria S. Vorontsova, Tiina Särkinen
Data type: species data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/phytokeys.127.34326.suppl1

Supplementary material 2

Specimens examined by the authors for the preparation of these keys
Authors: Sandra Knapp, Maria S. Vorontsova, Tiina Särkinen
Data type: species data
Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Link: https://doi.org/10.3897/phytokeys.127.34326.suppl2
Five new species of the genus *Primulina* (Gesneriaceae) from Limestone Areas of Guangxi Zhuangzu Autonomous Region, China

Shu Li¹²*, Zi-Bing Xin¹²*, Wei-Chuen Chou², Yi Huang³, Bo Pan¹², Stephen Maciejewski³⁴, Fang Wen¹²³

¹ Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, CAS & Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
² Gesneriad Conservation Center of China (GCCC), Guilin Botanical Garden, CAS, Guilin 541006, China
³ Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guanzezhou 510650, China
⁴ The Gesneriad Society, 2030 Fitzwater Street, Philadelphia, PA 19146, USA

Corresponding author: Fang Wen (wenfang760608@139.com)

Academic editor: Eberhard Fischer | Received 14 April 2019 | Accepted 24 June 2019 | Published 19 July 2019

Abstract

Five new species of *Primulina* (Gesneriaceae) are described and illustrated here, namely *P. purpureokylin* F. Wen, Y. Huang & W. Chuen Chou, *P. persica* F. Wen, Y. Huang & W. Chuen Chou, *P. cerina* F. Wen, Y. Huang & W. Chuen Chou, *P. niveolanosa* F. Wen, S. Li & W. Chuen Chou and *P. leiyyi* F. Wen, Z.B. Xin & W. Chuen Chou. The characteristic traits of these species, together with photographs, detailed descriptions, notes on etymology, distribution, and habitat, as well as comparisons with morphologically similar species, are provided.

Keywords

Biodiversity, flora of Guangxi, karst, lithophilic plant, new taxon, taxonomy

Introduction

The genus *Primulina sensu lato*, as a group, is representative of the rich diversity of Chinese Gesneriaceae. The tropical and subtropical karst limestone mountainous areas of Guangxi, China, are the centers of species diversity and differentiation of this genus. As
of the end of June 2017, the accepted and published species of *Primulina* from China had already reached 180 (including infraspecific taxa). Among them, 115 species (more than 63%) are confirmed and recorded from Guangxi Zhuangzu Autonomous Region (Guangxi for short) (Xu et al. 2017). Recently, an additional 16 new taxa of *Primulina* from China were published. By the end of January 2019, at least 196 species of *Primulina* were recorded from China (Wen et al. 2019). Many new taxa of *Primulina* from South and Southwest China are being discovered and published. After reviewing the genus *Primulina* and collating the new taxa for about two years (2017–2018), we discovered that there were a total of 11 new taxa from Guangxi. They are *P. lutescens* B. Pan & H. S. Ma (Ma et al. 2017), *P. albicalyx* B. Pan & Li H. Yang (Yang and Pan 2017), *P. curvituba* B. Pan, L.H. Yang & M. Kang (Yang et al. 2017), *P. dichroantha* F. Wen, Y.G. Wei & S.B. Zhou (Wu et al. 2017), *P. yandongensis* Ying Qin & Yan Liu (Qin et al. 2018), *P. hiemalis* Xin Hong & F. Wen, *P. davidioiides* F. Wen & Xin Hong (Hong et al. 2018b), *P. zhoui* F. Wen & Z.B. Xin, *P. huangii* F. Wen & Z.B. Xin (Xin et al. 2018), *P. canguwuensis* X. Hong & F. Wen (Hong et al. 2018a), *P. hochiensis* (C.C. Huang & X.X. Chen) Mich. Möller & A. Weber var. *ovata* L.H. Yang, H.H. Kong & M. Kang (Yang et al. 2019). Guangxi is located in southern China. Most of the province originates from erosion of a limestone plateau and has a subtropical monsoon-affected climate. Several new species of Gesneriaceae have been discovered and published in recent years from this region. We suspect that more new taxa of *Primulina*, and even Gesneriaceae, are still to be found here.

The Guangxi Institute of Botany continues to support the Gesneriad Conservation Center of China (GCCC) and the Guilin Botanical Garden, CAS, in carrying out the investigations of Gesneriaceae diversity in S & SW China in recent years. Since 2015, the GCCC has been introducing, conserving, and propagating a large number of *Primulina* plants from S and SW China and N Vietnam. Many *Primulina* species from the Guangxi area are new to science, and waiting to be further studied. After careful study of both relevant specimens and taxonomic publications from the adjacent regions (Wang et al. 1990, 1998; Li and Wang 2005, Wei et al. 2010; Weber et al. 2011; Möller et al. 2016; Xu et al. 2017), we concluded that these plants represent five new species of *Primulina*. Descriptions, figures, and photos of these plants are presented here, as are morphological characters which are compared with those of closely related species.

Taxonomic treatment

Primulina purpureokylin F.Wen, Yi Huang & W.Chuen Chou, sp. nov.
urn:lsid:ipni.org:names:77199643-1

Fig. 1

Diagnosis. *Primulina purpureokylin* most resembles *P. leprosa* (Yan Liu & W.B. Xu) W.B. Xu & K.F. Chung (Fig. 6 A) (Xu et al. 2010, 2012) in having similarly purple indumentum on both surfaces of the leaf blade, but differs in having fewer leaves (4–6
in *P. purpureokylin* vs 5–12 in *P. leprosa*; same order as following), smaller leaf blade size (2–6.5 × 1.5–3.5 cm vs. 6–13 × 4–8 cm), bracts shape (linear or linear-lanceolate vs broadly ovate), corolla color (pinkish purple vs. yellow) and length (1.5–1.8 cm long vs. ca. 2.3 cm long), staminodes number (2 vs 3) and indumentum of style (nearly glabrous vs glandular-pubescent).

Type. CHINA. Pingguo County, Xin’an Town, Gusha village, 23°16’N, 107°29’E, 200 m a.s.l., growing on the surface and crevices of moist limestone rocks at the bottom of cliffs, 3 Apr 2018, Chou Wei Chuen et al. CWC171116-01 (holotype: IBK!, isotype: IBK!).

Description. Perennial herbs. Rhizome subterete, 1–1.5 cm long, 5–10 mm in diameter. Leaves 4–6, all basal, opposite pairs; petiole compressed, cross section semi-elliptic, 1.5–2.5 cm long, 0.6–1.1 cm wide, shortly reddish purple to purplish brown strigose on both surfaces; blades dark green to purplish green, coriaceous or stiffly chartaceous, obliquely ovate, elliptic to broadly oblong-ovate, left-right asymmetric or symmetric, 2–6.5 × 1.5–3.5 cm, upper surface distinctly bullate, cuneate at base, commonly symmetric, occasionally oblique, margin entire, obtuse or rounded at apex, with erect reddish purple pubescence on both surfaces, margins with ciliate, pubescence 0.5–1 mm long, lateral veins 3 or 4 on each side, impressed adaxially and prominent abaxially. Cymes axillary, 2–4, 1- or 2-branched or single, 1- or 2–4-flowered on one cyme; peduncle 5.5–14.5 cm long, slender, 1–1.2 mm in diam., erect white glandular-pubescent; bracts 2, opposite, purplish green, linear or linear-lanceolate, ca. 6 × 1.5 mm, margin entire, acute at apex, sparsely purple puberulent outside, glabrous inside. Bracteoles 2, opposite, shape, hairs and color same as bracts but obviously smaller, ca. 3 × 0.8 mm. Pedicel 1–1.6 cm long, 0.8–1 mm in diam. Calyx 5-parted near to the base, lobes narrowly lanceolate-linear, 3–4 × 0.8–1 mm, margin entire, acute at apex, spreading white pubescent outside, glabrous nearly inside. Corolla pinkish purple, within 8–10 longitudinal dark purple stripes from corolla throat to the bottom of corolla tube, 1.5–1.8 cm long, spreading glandular puberulent outside, glabrous inside; tube tubular, pink, 8–9 mm long, 5–6 mm in diameter in medium, 5.5–6.5 mm in diam. at the mouth; limb distinctly 2-lipped, dark pink to purplish pink, adaxial lip 2-lobed to the middle, lobes ovate or nearly oblong, ca. 5 × 3 mm, obtuse to rounded at apex, with 2 or 3 deep purple lines inside; abaxial lip 3-lobed over the middle, two lateral lobes in apparently obliquely oblong, the central one zygomorphic, oblong, ca. 7 × 4 mm, rounded at apex. Stamens 2, adnate to ca. 5.5 mm above the base of the corolla tube. 5.5 mm above the base of the corolla tube; filaments white, geniculate at the middle, ca. 5.5 mm long, glabrous; anthers pale brown to purplish brown, subreniform, slightly contracted in the middle, ca. 1 mm long, glabrous. Staminodes 2, translucent, 0.8–1 mm long, glabrous, adnate to ca. 5 mm above the base of the corolla tube. Disc annular, ca. 0.7 mm high, margin entire. Pistil 1–1.1 cm long, ovary yellowish brown, linear, ca. 5 mm long, 0.8–1 mm in diam., glandular-puberulent; style white to translucent, 5–6 mm long, nearly glabrous; stigma obtrapeziform, ca. 0.9 mm long, apex 2-lobed. Capsule glabrous, valvate dehiscence when mature, 1.5–2 cm long.

Phenology. Flowering in Nov., fruiting time in Dec.
Etymology. The specific epithet, ‘purpureokylin’, consists of two parts. The first part of the scientific epithet is “purpure-”, means purple. It refers to the upper faces of the leaf blades which are covered in purple pubescent-hairs. The second half of the epithet, “kylin”, refers to one of the auspicious animals in the traditional culture of China. Because the interesting and beautiful leaves are full of purple-hairs, bubbles on the surface appear as if covered with the purple squamae of Kylin. The Chinese name is “Zí Líng Bào Chūn Jù Tái” (紫麟报春苣苔).

Distribution and habitat. Primulina purpureokylin is currently known only from the type locality. Only a single population with ca. 100 individuals was discovered and confirmed. The species is only known growing on the surface and crevices of wet limestone rocks at the bottom of cliffs in Pingguo County, Guangxi, China.

Provisional IUCN conservation assessment. Along with the further field investigations for the current survival situation of Primulina purpureokylin, the extinction risk of this species is rising because of over-harvesting by local plant collectors. Over-exploited because of its beauty, this unpublished species is on the brink of extinction. Although more surveys are needed to clarify its conservation status, the provisional conservation status is Critically Endangered CR B2ab (iii, v) according to the IUCN red list criteria (IUCN 2012).
Primulina persica F. Wen, Yi Huang & W. Chuen Chou, sp. nov.
urn:lsid:ipni.org:names:77199644-1

Fig. 2

Diagnosis. Primulina persica most closely resembles P. gongchengensis Y.S. Huang & Yan Liu (Fig. 6 B) (Huang et al. 2012) in having similarly shaped leaf blades. It differs from the latter by having a different indumentum on both surfaces of the leaf blades (densely eglandular-pubescent in P. persica vs densely glandular-pubescent in P. gongchengensis; same order as following), margin of leaf blade (irregularly serrate in different numbers vs. repand or crenate), smaller bracts (6–7 × 1.5–2 mm vs. 10–20 × 2–3.5 mm) and bracts shape (linear vs. narrowly rhombic to oblanceolate), the indumentum of calyx lobes inside (glabrous vs sparsely glandular-pubescent) and shorter corolla length (7.5–10 mm long vs. 22–28 mm long).

Type. CHINA. Yangshuo County, Gaotian Town, Lexiang village, 24°42'N, 110°30'E, 124 m a.s.l., growing on the surface of tufa and crevices of moist rocks on a cliff of a limestone hill, 3 Apr 2018, Chou Wei Chuen et al. CWC171116-01 (holotype: IBK!, isotypes: IBK!)

Description. Perennial herbs. Rhizome subterete, 5–6 cm long, 8–10 mm in diam. Leaves 6–10, crowded at apex of rhizome, petiolate; petiole cylindrical, upper slightly smaller and the bottom slightly inflated but the base slightly cupulate, 8–15 cm long, 6–8 mm in diam. at base, densely eglandular-pubescent; leaf blade herbaceous, rhomboid-ovate or elliptic, 6–11 × 5–9.5 cm, apex acute, obtuse or slightly rounded, base cordate, broadly cuneate to cordate, slightly inequilateral, margin irregularly serrate in different numbers, densely pubescent on both surfaces, lateral veins 2 or 3 on each side, impressed adaxially and prominent abaxially. Cymes 4–10, 1–3-branched, 12–30-flowered; peduncle 12–20 cm long, 2–2.5 mm across, densely glandular-pubescent; pedicel 1–3 cm long, densely glandular-pubescent; bracts opposite, linear, 6–7 × 1.5–2 mm, margin entire, apex acute, adaxially glandular-rufulent, abaxially nearly glabrous. Calyx 5-parted nearly to base, lobes narrowly lanceolate, 4.5–5.5 × ca. 1 mm, margin entire and ciliate, outside densely glandular-pubescent, inside glabrous. Corolla pinkish, fuchsia to pale purple, 7.5–10 mm long, 4–4.5 mm in diam. at mouth, outside glandular-puberulent; tube short, 5.5–6.5 mm long, ca. 4.5 mm in diam. in middle, tube base slightly swollen, ca. 2 mm in diam. at base; limb distinctly 2-lipped, adaxial lip 2-lobed to more than the middle, lobes oblong, apex round, 3.2–3.8 × 2.5–3 mm, abaxial lip 3-lobed to more than the middle, lobes oblanceolate, apex round, 4.5–5.2 × 3.3–3.6 mm. Stamens 2, adnate to 2.5 mm above corolla tube base, filaments 4–4.5 mm long, curved at middle, anthers elliptic or reniform, ca. 1.5 mm long, glabrous; stamnodes 3, lateral ones 0.8–1 mm long, adnate to 1.8–2 mm above corolla tube base; middle one 0.5 mm long, adnate to ca. 1.3 mm above corolla tube base. Disc annular, ca. 0.6 mm in height, margin entire. Pistil 6.5–7.5 mm long, ovary ovoid, ca. 2.5 × 1.3–1.5 mm, glandular-puberulent; style indumentum same as ovary, 4–5 mm long, ca. 0.5 mm in diam. in the middle; stigma obturate, ca. 0.8 mm long, apex 2-lobed. Capsule ovoid, ca. 8 mm long, valvate dehiscence when mature, outside pubescent.
Phenology. Flowering from May to June; fruiting from June to August.

Etymology. The specific epithet, ‘persica’, refers to the color of its flower, a vivid and bright peach. The Chinese name is “Tāo Hóng Xiáó Huá Jú Tāi” (桃红小花苣苔).

Distribution and habitat. Primulina persica is currently known only from the type locality and only about 50 individuals were confirmed. All individuals are growing on the surface of tufa and wet crevices of moist rocks on the cliff of a limestone hill in Yangshuo, Guangxi, China. There are no accompanying plants except for some ferns.

Provisional IUCN conservation assessment. The original habitat of this species was almost destroyed because of road building in 2013; it directly resulted in a single small population with no more than 50 surviving individuals. We hope we can find more populations in the future through field surveys. The habitat of Primulina persica is likely to be subjected to human activities because the survival population grows in cracks of a limestone cliff by the side of the road. Thus, based on currently available information, P. persica should be considered as ‘Critically Endangered’ (CR): B1+2ab(V); C2b, following the IUCN categories and criteria (IUCN 2012).
Primulina cerina F.Wen, Yi Huang & W.Chuen Chou, sp. nov.
urn:lsid:ipni.org:names:77199645-1

Fig. 3

Diagnosis. *Primulina cerina* most closely resembles *P. renifolia* (D. Fang & D.H. Qin) J.M. Li & Y.Z. Wang (Fig. 6 C) (Fang and Qin 2004, Wang et al. 2011, Weber et al. 2011) in having similarly shaped leaf blades, but differs in their indumentum of the peduncle (densely erectly eglandular-puberulent in *P. cerina* vs spreading white pubescent and glandular puberulent in *P. renifolia*; same order as following), corolla tube shape (tubular, abaxially straight and not swollen vs. obliquely campanulate, abaxially swollen), corolla color (beige to pale yellow mixed slightly reddish brown vs. pale purple to purple inside longitudinally purple lines), indumentum of filaments (glabrous vs glabrous but base glandular puberulent), the indumentum of calyx lobes inside (glabrous vs sparsely glandular-pubescent) and stigma shape (obtrapeziform and 2-lobed vs obliquely hippocrepiform but unlobed).

Type. CHINA. Yizhou city, Beiya Town, Xiaozhudong village, 24°22’N, 108°23’E, 220 m a.s.l., only known from crevices of moist rock surfaces at the entrances of a big limestone cave, 3 Apr 2018, Chou Wei Chuen et al. CWC171116-01 (holotype: IBK!, isotypes: IBK!)

Description. Perennial herbs. Rhizome small and short, indistinctive but nearly cylindrical, 3–8 mm long, 2–3 mm in diam. Leaves numerous, 8–20 or more, all basal, petiolate; petiole pale brownish purple to dark brownish purple, cylindrical, 7.5–12 cm long, 3–3.2 mm in diam., extremely short puberulent to nearly glabrous; leaf blade dark green, slightly fleshy to thickly chartaceous, herbaceous when dried, nearly rounded to cordate rounded, 3–5.5 × 3.5–5.5 cm, apex obtuse to rounded, base cordate to deeply cordate, margin undulant to crenate; lateral veins 3–4 on each side, slightly impressed adaxially and apparently prominent abaxially. Cymes 8–16, 1–3-branched, 16–30-flowered per cyme; peduncle 8–15 cm long, ca. 2.5 mm in diam., densely erectly eglandular-puberulent; pedicel 5–10 mm long, ca. 1 mm in diam., indumentum same as pedicel; bracts 2, opposite, brownish purple, linear to oblanceolate, 5–12 × 1–4 mm, margin entire to inconspicuously dentate, apex acuminate to acute, adaxially very shortly puberulent, abaxially nearly glabrous. Calyx 5-parted nearly to base, lobes brownish purple, narrowly lanceolate, 3–4 × ca. 1 mm, margin entire, outside sparsely extremely short puberulent, inside nearly glabrous. Corolla beige to pale yellow mixed slightly reddish brown, 1.8–2 cm long, 4–5 mm in diam. at mouth, outside sparsely eglandular-puberulent to nearly glabrous, inside glabrous; tube tubular, 1.5–1.8 cm long, 3.5–4 mm in diam. at the middle, tube base slightly constricted, 1–1.5 mm in diam. at base; limb distinctly 2-lipped, adaxial lip 2-lobed to base, lobes oblong, apex rounded, 2.5–3 × 2–2.5 mm, abaxial lip 3-lobed to over middle, lobes oblong, apex rounded, ca. 3.5 × 3 mm. Stamens 2, adnate to ca. 3 mm above corolla tube base, filaments ca. 6 mm long, curved at middle, anthers elliptic or reniform, ca. 1.8 mm long, glabrous; staminodes 2, extremely small and inconspicuous, punctate, ca. 0.05 mm
long, adnate to corolla tube base. Disc annular, ca. 0.9 mm in height, margin entire to sinuate. Pistil 10.5–11 mm long, ovary ovoid, ca. 2.5 × 1 mm, densely eglandular-puberulent; style ca. 8 mm long, ca. 0.2 mm in diam. at the middle, the lower part of style sparsely eglandular- and glandular-puberulent but the upper half part of style nearly glabrous; stigma obtrapeziform, ca. 0.5 mm long, apex 2-lobed. Capsule ovoid, valvate dehiscence when mature, 4–4.5 × ca. 3 mm.

Phenology. Flowering from April to May; fruiting from June to July.

Etymology. The specific epithet, ‘cerina’, refers to the special color of the flowers; ‘cerina’ is derived from the Latin, ‘cerinus’, meaning dark yellow or sulfur yellow, but mixed with a little pale reddish brown. The color seems like the hue of the natural brimstone (sulphur) ore. The Chinese name is “Àn Líu Sè Xiáo Huā Jù Tái” (暗硫色小花苣苔).

Distribution and habitat. Primulina cerina is currently known only from the type locality. The species grows in the crevices of rocks with wet surfaces at the entrances of a large limestone cave in Yizhou, Guangxi, China.

Provisional IUCN conservation assessment. Primulina cerina is rarer than the species mentioned above, *P. persica*. At present, only a single population with ca. 20 individuals is known, counted and confirmed from 2016 to 2018. Although the type locality is in an outlying mountain area and surrounded by limestone forest, this species should be assessed as ‘Critically Endangered, CR B2a+C2a(i,ii)+D’, given the few known individuals and a single population based on the IUCN categories and criteria (IUCN 2012).
Primulina niveolanosa F. Wen, S. Li & W. Chuen Chou, sp. nov.
urn:lsid:ipni.org:names:77199646-1

Fig. 4

Diagnosis. Primulina niveolanosa most closely resembles P. repanda (W.T. Wang) Y.Z. Wang (Fig. 6 D) (Wang 1981, Wang et al. 2011, Weber et al. 2011) in having similarly shaped leaf blades, but differs in their indumentum of the leaf blades (both surfaces spreading densely long white villous to lanate in P. niveolanosa vs. appressed puberulent to villous in P. repanda; same order as following), number of bracts (3, whorled vs. 2, opposite), shape of bracts (narrowly oblong to broadly oblanceolate vs. lanceolate-linear to subulate), shape of calyx lobes (linear to narrowly oblanceolate vs. narrowly triangular), corolla length (1.5–1.8 cm long vs. ca. 8 mm long).

Type. CHINA. Yizhou city, Beiya Town, Jiuchai village, 24°24′N, 108°24′E, 181 m a.s.l., growing on the surface of a moist cliff at the edge of a village, 3 Apr 2018, Chou Wei Chuen et al. CWC171116-01 (holotype: IBK!, isotypes: IBK!)

Description. Perennial herbs. Rhizome cylindrical, 3–15 mm long, 1.5–3 mm in diam. Leaves numerous, 16–40 or more, all basal, petiolate; petiole green, oblong-oblate, 4–8 cm long, 6–15 mm in diam., spreading appressed white pubescent to lanate; leaf blade pale green to green, fleshy to thickly chartaceous, herbaceous when dried, narrowly oblong, narrowly oblanceolate to oblong-elliptic, 5–10 × 2.5–4.5 cm, apex obtuse and occasionally rounded, base gradually attenuated to form petiole, margin entire, undulate to crenate, both surfaces densely villous to lanate with long, spreading white hairs, lateral veins 4 or 5 on each side, slightly impressed adaxially and apparently prominent abaxially. Cymes axillary, 6–12 per plant, 2–4-branched, 16–36-flowered per cyme; peduncle 15–25 cm long, 2.5–3.5 mm in diam., green, densely white villous and lanose; bracts 3, whorled, brownish green, margin entire to undulate, apex acuminate to acute, adaxially white pubescent, abaxially nearly glabrous, lateral ones bigger, ca. 15 × 6 mm, narrowly oblong to broadly oblanceolate, central one smaller, ca. 15 × 3.5 mm; pedicel 1–1.5 cm long, ca. 1 mm in diam., indumentum same as pedicel; pedicel green, 1–2.5 cm long, 1–1.5 mm in diam., densely white pubescent. Calyx 5-parted nearly to base, lobes green to brownish green, linear to narrowly oblanceolate, 5–7 × ca. 2 mm, margin entire, outside white puberulent, inside nearly glabrous. Corolla pale pink to white, inside with two dark pink to pinkish orange stripes, 1.5–1.8 cm long, 5–7.5 mm in diam. at mouth, outside and inside glabrous; tube infundibular, pale pink, 1.1–1.3 cm long, 4.5–5.5 mm in diam. at the middle, 1.3–1.8 mm in diam. at base; limb distinctly 2-lipped, adaxial lip 2-lobed to over middle, lobes oblong to rounded, apex rounded, 3.5–4 × ca. 4 mm, abaxial lip 3-lobed to over middle, lobes oblong to rounded, apex rounded, 4.5–4 × ca. 4 mm. Stamens 2, adnate to ca. 1.8–2.2 mm above corolla tube base, filaments 1.8–2.3 mm long, geniculate at 1/3 from the bottom, glabrous, anthers elliptic or reniform, ca. 1 mm long, ca.0.5 mm in diam. per anther, white beard; staminodes 3, glabrous, lateral ones adnate to 1.7–2 mm above corolla tube base, white to translucent, ca. 2 mm long, apex capitate, central one adnate to ca. 1.6 mm above corolla tube base, capitate. Disc annu-
lar, glabrous, ca.0.6 mm in height, margin entire to sinuate. Pistil ca. 8 mm long, ovary ovoid, ca. 2 × 1.3 mm, densely eglandular lanose; style ca. 6 mm long, ca. 0.3 mm in diam. at the middle, the lower part of style sparsely eglandular-puberulent but the upper half part of style nearly glabrous; stigma obtrapeziform, ca. 0.5 mm long, apex 2-lobed. Capsule ovoid, glabrous, valvate dehiscence when mature, 4–4.5 × ca. 3 mm.

Phenology. Flowering from March to April; fruiting from April to May.

Etymology. The specific epithet, ‘*niveolanosa*’, consists of two parts. The first part of “niveo”, comes from the Latin word, ‘*niveus*’, and means as white as snow, or snow-white; the second half, ‘*lanosa*’, is from the Latin, ‘*lanosus, lani-*’, meaning with lanose or villous hairs. Thus, the scientific name refers to the plants seemingly covered with snow because of the indumentum of snowy lanose hairs. The Chinese name is “Mián Máo Xiáo Huā Jù Tái” (绵毛小花苣苔).

Distribution and habitat. *Primulina niveolanosa* is currently known only from the type locality: a single population with ca. 100 individuals, and although it might be endangered, more surveys are needed to clarify its conservation status. The species is only known growing on the surface of a moist cliff along the edge of a village.

Figure 4. *Primulina niveolanosa* F.Wen, S. Li & W.Chuen sp. nov. **A** a plant in flower, cultivated in GCCC **B** cyme with flowers **C** close look of cyme and flowers **D** front view of corolla **E** lateral view of corolla **F** lateral view of corolla, bracts and bracteoles **G** dorsal view of corolla **H** lateral view of corolla with scale **I** opened corolla for showing stamens and staminodes **J** pistil with two calyx lobes for showing ovary and style and their indumentum **K** adaxial surface of calyx lobes. Photographed by Fang Wen, charted by Wen-Hua Xu.
Provisional IUCN conservation assessment. About 100 mature individuals have been recorded and confirmed, growing on a wet rock surface under evergreen broad-leaved forest on a limestone hill. Because the local government of Yizhou city is planning to develop a scenic spot project at this place, the habitat of this new species is likely to be subjected to human activities. Thus, based on currently available information, _P. niveolanosa_ should be considered as ‘Critically Endangered’ (CR): B1+2ab(V); C2b, following the IUCN categories and criteria (IUCN 2012).

Primulina leiyyi F.Wen, Z.B. Xin & W.Chuen Chou, sp. nov. urn:lsid:ipni.org:names:77199647-1

Fig. 5

Diagnosis. _Primulina leiyyi_ most closely resembles _P. longgangensis_ (W.T. Wang) Yan Liu & Y.Z. Wang (Fig. 6 E) (Wang and Huang 1982, Wang et al. 2011, Weber et al. 2011) in having similarly shaped leaf blades, but differs in their indumentum of young stems (sparingly appressed hazel pubescent in _P. leiyyi_ vs. nearly glabrous in _P. longgangensis_; same order as following), shape of bracts (elliptic to cymbiform vs. linear to lanceolate or obovate), indumentum of corolla (outside sparingly glandular-puberulent, inside glabrous vs. outside glabrous to puberulent, inside puberulent or glabrous below stamens), pistil length (1.8–2.0 cm long vs. ca. 2.8 cm long) and capsule length (4.8–5.5 cm long vs. 1.6–2.5 cm long)

Type. CHINA. Nanning city, Suxu Town, Shibaluohandong village, 22°32’N, 108°3’E, 150 m a.s.l., growing on the top of limestone cliff near road, 3 Apr 2018, _Lei YuYang et al. LYY181208-01_ (holotype: IBK!, isotypes: IBK!)

Description. Perennial herbs. Rhizome cylindrical, the long rhizome up to 50 cm long or longer and branched repeatedly after several years of growth, 5–6 mm in diam.; branch up to 8–15 cm long, sparingly appressed hazel pubescent when young, gradually glabrous when mature. Leaves ternate, occasionally opposite, subsessile to sessile; leaf blade fleshy to thickly herbaceous when fresh, hard chartaceous when dried, often asymmetric, obliquely oblanceolate to broadly ensiform, 6.5–16 × 1.5–2.5 cm, apex acuminate to acute, base narrowly cuneate, gradually attenuated to be petiole, margin entire, adaxially and abaxially densely appressed pubescent and strigose, lateral veins 4 or 5 on each side, slightly impressed adaxially and apparently prominent abaxially. Inflorescences axillary, cymes 2–6 on the near top of every branch, 1-branched, (1)2–6-flowered per cyme; peduncle reddish brown, 3–7.5 cm long, 1–1.5 mm in diam., densely spreading eglandular-pubescent; bracts 2, opposite, green to yellowish green, elliptic to cymbiform, 1.2–2.3 cm × 3–6.5 mm, margin entire, apex acuminate to acute, adaxially and abaxially densely appressed pubescent; pedicel reddish brown, 2–3 cm long, ca. 1 mm in diam., indumentum same as peduncle. Calyx 5-parted to base, lobes reddish brown, narrowly lanceolate-linear to linear, ca. 8 × 0.3 mm, margin entire, outside densely puberulent, inside nearly glabrous. Corolla dark pink to purplish pink, ca. 3.5 cm long, 11–12.5 mm in diam. at mouth, outside sparsely
Phenology. Flowering from November to the beginning of December; fruiting in January of the next year.

Etymology. The new species is named after Mr. Yu-Yang Lei, who first discovered and collected this rare species and who accompanied us on a number of subsequent field expeditions in Nanning, Guangxi. The Chinese name is “Léi Shì Bào Chūn Jù Tái” (雷氏报春苣苔).
Distribution and habitat. It is currently known only from the type locality in a single population with ca. 100 individuals. Although it might be endangered, more surveys are needed to clarify its conservation status. The species is only known growing on the surface of wet rocks on the limestone hills along the edges of village roads.

Provisional IUCN conservation assessment. We carefully explored the type locality on five visits over a period of three years. *Primulina leiyyi* appears to be restricted to limestone hills surrounding Shibaluohandong village, Suxu Town, Nanning city. Although the habitats are very near to densely populated areas and are easily threatened by human activities, this species is common and locally abundant on limestone hills. Using the IUCN Red List categories (IUCN 2012), a provisional conservation status of Least Concern (LC), is assessed for this species.

Acknowledgements

We are grateful to Mr. Sheng-Yu Liang from Pingguo County, Mr. Xiang-Chen Pan from Yizhou city and Mr. Yu-Yang Lei from Nanning city for their discoveries of special species. We thank Prof. Yi-Gang Wei from the Guangxi Institute of Botany (GXIB) for the identification of specimens and Mr. Wen-Hua Xu for preparing the excellent figures. This study was financially supported by the Fund of Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain (17-259-23), the National Natural Science Foundation of China (31860047), the Natural Science Foundation of Guangxi (2017GXNSFA198006), Science Research Foundation of Guangxi Academy of Sciences (2017YJJ23022), the Key Sci. & Tech. Research and
Development Project of Guangxi (Guike AB16380053), Project of the Forestry Administration of Guangdong Province (Grant No. YUE CAI NONG [2019] No. 51) and the Foundation of Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences. For editorial assistance, we thank Michael LoFurno (Adjunct Professor, Temple University) from Philadelphia, USA.

References

Three new species of *Lachemilla* (Rosaceae) from South America

Diego F. Morales-Briones1,2,*, Katya Romoleroux3,*, David C. Tank2

1 Department of Plant and Microbial Biology, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, Saint Paul, Minnesota, 55108, USA 2 Department of Biological Sciences and Stillinger Herbarium, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, Idaho 83844-3051, USA 3 Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Apartado 17-01-2184, Quito, Ecuador

Corresponding author: Diego F. Morales-Briones (dfmoralesb@gmail.com)

Academic editor: Alexander Sennikov | Received 20 May 2019 | Accepted 22 June 2019 | Published 19 July 2019

Abstract

Three new species of *Lachemilla* (Rosaceae), two from Colombia and one from Peru, are described and illustrated. *Lachemilla rothmaleriana* is characterized by its stout stems, sericeous-villosous indumentum, and wide ascending sheaths with trilobate lateral lobes. *Lachemilla argentea* presents a unique combination of tripartite basal leaves with an adaxial silvery villous indumentum, and decumbent branches with verticillate lobed sheaths. Finally, *Lachemilla cyanea* has distinctly basal reniform leaves with a blue-green color and hirsute pubescence. Phylogenetic analyses of the nuclear ribosomal cistron and multiple regions of the plastid genome revealed the allopolyploid origin of the three new taxa.

Resumen

Tres nuevas especies de *Lachemilla* (Rosaceae), dos de Colombia y una de Perú, se describen e ilustran. *Lachemilla rothmaleriana* se caracteriza por tener tallos robustos, indumento sericeo-villoso, y verticilos anchos ascendentes con lóbulos laterales trilobados. *Lachemilla argentea* presenta una combinación única de hojas basales tripartitas con indumento villoso plateado en el haz y ramas decumbentes con verticilos lobulados. Finalmente, *Lachemilla cyanea* presenta hojas basales distintivas de forma reniforme, color azul-verdoso y pubescencia hirsuta. Análisis filogenéticos del cistrón ribosomal nuclear y múltiples regiones del genoma cloroplástico revelaron el origen alopoliploide de los tres nuevos taxones.

Keywords

Allopolyploidy, Colombia, *Lachemilla*, new species, páramo, Peru, Rosaceae

* These authors contributed equally to this work
Introduction

The genus *Lachemilla* (Focke) Rydb. is a morphologically diverse group that includes perennial herbs, subshrubs, and dwarf shrubs (Romoleroux 1996, 2004; Gaviria 1997). *Lachemilla* is distributed in the neotropical mountains from Mexico to Argentina and Chile, between 2,200 m and 5,000 m (Romoleroux 1996, 2004; Gaviria 1997), and it is especially common and diverse in the high elevation ecosystems of the Northern Andes where this group has undergone a rapid ecological radiation associated with the most recent Andean orogeny (Romoleroux 2004; Morales-Briones et al. 2018a).

The taxonomy of *Lachemilla* has proven challenging (e.g., Perry 1929; Rothmaler 1935a, 1935b, 1937), and although more recent regional treatments have reviewed this group (Gaviria 1997; Romoleroux 2004; Barrie 2015), the complex morphology of *Lachemilla* has obscured species boundaries and morphological subdivisions. Additionally, recent attention to the systematics of *Lachemilla* has resulted in the description of several new species (Romoleroux 2009; Romoleroux and Morales-Briones 2012; Morales-Briones 2016), but a comprehensive monographic revision of the genus is still needed (Romoleroux and Morales-Briones in prep.).

Based on molecular phylogenetic evidence, Morales-Briones et al. (2018a) proposed the recognition of 61 species of *Lachemilla* separated into four well-supported lineages that are somewhat congruent with previously morphology-based classification systems (Perry 1929; Rothmaler 1937). The Tripartite clade includes herbs with ascending and procumbent stems and tripartite leaves. The Verticillate clade includes subshrubs with erect or decumbent stems and reduced leaves that fuse with the stipules to form verticillate sheaths. The Pinnate clade comprises species with repent or decumbent stems and pinnate or bipinnatifid basal leaves. Finally, the Orbiculate clade encompasses species with a stoloniferous habit and palmately lobed leaves, and, it has been established that the Orbiculate clade is of ancient hybrid origin (Morales-Briones et al. 2018b). Moreover, Morales-Briones and Tank (2019a), using copies (or ribotypes) of the nuclear ribosomal (nrDNA) cistron and multiple regions of the plastid genome (cpDNA), showed that at least 30 species of *Lachemilla* are allopolyploids, and that this condition is widespread among the four main clades of this group.

Here, we describe and illustrate three new species of *Lachemilla*, two from Colombia and one from Peru, and using a phylogenetic approach, we show evidence that these new species are of allopolyploid origin.

Materials and methods

Phylogenetic analyses

We used previously published datasets from Morales-Briones and Tank (2019b) from the nrDNA cistron and 45 regions of cpDNA for *Lachemilla*, and included 68 samples representing 48 species of *Lachemilla*, seven samples of the three new taxa, and four outgroups (Appendix 1). DNA extraction, amplification and sequencing were..
Three new species of *Lachemilla* (Rosaceae) from South America

Carried out as described in Morales-Briones and Tank (2019a). Molecular datasets from Morales-Briones and Tank (2019a) and data for the new taxa presented here were generated simultaneously. Data processing and ribotype selection was performed as described in Morales-Briones and Tank (2019a). The three regions of the nrDNA (ETS, ITS1, and ITS2) were concatenated, and the 45 regions of the cpDNA were concatenated as well. Phylogenetic analyses of the nrDNA and cpDNA matrices were carried out independently to avoid conflicting phylogenetic signal due to widespread cytonuclear discordance in *Lachemilla* produced by polyploidy and ancient hybridization (Morales-Briones et al. 2018a, 2018b). Maximum likelihood (ML) analyses were conducted with RAxML v8.2.10 (Stamatakis 2014) using a GTRGAMMA model, 100 searches for the best tree, and clade support was assessed with 1,000 bootstrap replicates summarized using transfer bootstrap expectation (TBE; Lemoine et al. 2018). Bayesian inferences (BI) were performed with MrBayes v3.2.6 (Ronquist et al. 2012) on the CIPRES portal (Miller et al. 2010). Analyses consisted of two independent runs with four Markov Chain Monte Carlo (MCMC) chains for 20 million generations with trees sampled every 20,000th generation and allowing sampling across the entire substitution rate model space using reversible-jump Markov Chain Monte Carlo (rjMCMC) (nst = mixed) and rate variation set to GAMMA. Parameter estimate convergence of the independent MCMC runs was assessed by analyzing plots of all parameters and the –lnL after reaching an ESS (effective-sample size) ≥ 200 using Tracer v1.6 (Rambaut et al. 2014). A 50% majority rule consensus tree was generated and posterior probabilities (PP) were calculated after removing the first 25% of sampled trees. Alignments and phylogenetic trees are available at TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S24437).

Taxonomic analyses

Morphological characters were studied using dried herbarium specimens of *Lachemilla* deposited in ANDES, CAS, COL, F, HUT, HAO, ID, JE, MEXU, MO, NY, QCA, TEX, and USM. Additionally, we reviewed species descriptions and types to determine the existence of the new taxa. The conservation status of the new species was evaluated using the guidelines of the International Union for Conservation of Nature (IUCN 2017).

Results and discussion

Phylogenetic analyses

The final cpDNA concatenated matrix included 65 sequences representing 47 species of *Lachemilla* and four outgroup species, and had an aligned length of 22,000 bp. The ML and BI analyses recovered the same overall topology (Fig. 1). The four major clades within *Lachemilla* are the same as in previous phylogenetic analyses of the genus (Morales-Briones et al. 2018a; Morales-Briones and Tank 2019a). The samples of
Figure 1. Bayesian 50% majority rule consensus tree of the cpDNA dataset. Posterior probabilities and transfer bootstrap expectation support values are shown above and below the branches, respectively.
Figure 2. Bayesian 50% majority rule consensus tree of the nrDNA dataset. Posterior probabilities and transfer bootstrap expectation support values are shown above and below the branches, respectively.
L. rothmaleriana form a clade (TBE = 100, PP = 1.0) and are placed as sister to *L. nivalis* (Kunth) Rothm. in the Verticillate clade. *Lachemilla cyanea* is placed in the clade (TBE = 100, PP = 1.0) composed of *L. frigida* (Wedd.) Rothm. and *L. jaramilloi* Romol. & D.F. Morales-B. (a known allopolyploid species) within the Pinnate clade. *Lachemilla argentea* is placed in two major clades. Three samples form a clade (TBE = 100, PP = 1.0) that is placed among other allopolyploid species (*L. purdiei* (L.M. Perry) Rothm., *L. adscendens* (Rothm.) Rothm. and *L. holosericea* (L.M. Perry) Rothm.) within the Verticillate clade. The remaining sample (2013_475_CO) is placed within a clade composed of only samples of *L. aphanoides* (Mutis ex L. f.) Rothm. within the Tripartite clade.

The final nrDNA concatenated alignment included 121 sequences representing 51 species of *Lachemilla* and four outgroup species, and had aligned length of 1038 bp. The ML and BI analyses also recovered the same overall topology (Fig. 2). As in the cpDNA analyses, the four major clades within *Lachemilla* are the same as in previous studies (Morales-Briones et al. 2018a; Morales-Briones and Tank 2019a). *Lachemilla rothmaleriana* showed the presence of two ribotypes within the Verticillate clade. One of the ribotypes is placed as sister (TBE = 100, PP = 1.00) to a clade composed of *L. adscendens*, *L. polylepis* (Wedd.) Rothm., *L. purdiei*, and *L. argentea*. The second copy is placed within a clade (TBE = 98, PP = 0.91) that includes several species with verticillate sheaths along the entire stem, like *L. hispidula* (L.M. Perry) Rothm., *L. equisetiformis* (Trevir.) Rothm., and *L. nivalis*, and several allopolyploid species (e.g. *L. adscendens*, *L. holosericea*, *L. sprucei* (L.M. Perry) Rothm.), but the resolution within this clade is rather uncertain. *Lachemilla cyanea* also presents two ribotype copies. One copy, as in the cpDNA tree, is placed in the clade (TBE = 100, PP = 0.99) composed of *L. frigida* and its allopolyploid species (e.g. *L. jaramilloi*, *L. sarmentosa* (L.M. Perry) Rothm.) within the Pinnate clade. The other ribotype is placed within a clade (TBE = 86, PP = 0.99) composed only of allopolyploid species (*L. williamsii* (L.M. Perry) Rothm., *L. repens* (C. Presl) Rothm., and *L. sarmentosa*) within the Verticillate clade. All samples of *L. argentea* also have two ribotypes. The first is placed in the Tripartite clade along several allopolyploid species that involve *L. aphanoides* as one parental species (e.g. *L. pseudovenusta*, *L. fulvescens* (L.M. Perry) Rothm., *L. purdiei*, *L. perryana* (Rothm.) Rothm.). The second copy is placed as sister (TBE = 84, PP = 0.79) to the allopolyploid species *L. purdiei* in the Verticillate clade.

Previous phylogenetic analysis of *Lachemilla* have shown that allopolyploidy is common in this group with at least 30 species confirmed to be of allopolyploid origin (Morales-Briones and Tank 2019a). Here we show that the three new taxa of *Lachemilla* described here are also allopolyploids. *Lachemilla rothmaleriana* appears to be an allopolyploid of two different species within the Verticillate clade. Based on the cpDNA tree we can determine that *L. nivalis* might be the maternal lineage, while the paternal lineage seems to be the same as in the allopolyploids *L. adscendens*, *L. purdiei* and *L. argentea*, all from Colombia. From the nrDNA tree we can see that the paternal species is either extinct or unsampled. Morphologically, *L. rothmaleriana* presents the main characteristic of the Verticillate clade, which is the presence of reduced leaves that fuse with the stipules to form verticillate sheaths, but this new taxon is distinguished mainly by
the presence of wide ascending sheaths with trilobate lateral lobes and a dense sericeous-villous indumentum (see Taxonomic treatment for details). The presence of divided lobes is a characteristic of other species of the Verticillate clade that are now known to be of hybrid origin, like *L. ascendens* and *L. sprucei* (Morales-Briones and Tank 2019a).

Lachemilla argentea is also an allopolyploid species of two major clades. The cpDNA tree shows that three of the four samples have the maternal lineage from the Verticillate clade, while for one sample (2013_475_CO) the maternal lineage is *L. aphanoides* in the Tripartite clade. The nrDNA data shows that the paternal lineage of *L. argentea* is in the Tripartite clade, except for 2013_475_CO which has an extinct or unsampled parental lineage in the Verticillate clade. Although the sample 2013_475_CO is monophyletic with the other samples of this species for both ribotypes in the nrDNA, the different position in the cpDNA tree is clear evidence that the parental contribution in the formation of allopolyploid species in *Lachemilla* can work in both directions, as well as the recurrent origin of allopolyploids, which has also been previously shown for this group (Morales-Briones and Tank 2019a), and is known for other related groups in Rosaceae, like *Fragaria* (Dillenberger et al. 2018). The basal tripartite leaves of *Lachemilla argentea* are characteristic of the Tripartite clade, but its decumbent branches with verticillate lobed sheaths resemble the Verticillate clade (see Taxonomic treatment for details).

Finally, *L. cyanea* also shows evidence of an allopolyploid origin between two major clades. The maternal species appears to be *L. frigida* in the Pinnate clade, which is also the maternal lineage of *L. jaramilloi* (Morales-Briones and Tank 2019a), with which *L. cyanea* also shares a rosette habit (see Taxonomic treatment for details). The paternal lineage appears to be the same as in the allopolyploid and morphologically similar species *L. williamsii*, *L. repens*, and *L. sarmentosa* in the Verticillate clade, where the parental lineage of these species has been shown likely to be extinct (Morales-Briones and Tank 2019a). Interestingly, these three similar species are hybrids of three different major clades (Pinnate, Verticillate, and Tripartite; Morales-Briones et al. 2018a). Given its tripartite leaf and glomerulate inflorescence (see Taxonomic treatment for details), *L. cyanea* also shares characteristics with the Tripartite clade, but we were not able to obtain evidence of this from the nrDNA tree, which can be explained by omission nrDNA copies during bioinformatic processing of the PCR amplicon pools as seen in other species of *Lachemilla* (Morales-Briones and Tank 2019a).

Taxonomic treatment

Lachemilla rothmaleriana D.F. Morales-B. & Romol., sp. nov.
urn:lsid:ipni.org:names:77199640-1
Figs 3–5

Diagnosis. *Lachemilla rothmaleriana* differs from *L. hispidula* (L.M. Perry) Rothm. and *L. nivalis* (Kunth) Rothm. by its stout stems, sericeous-villous indumentum, wide ascending sheaths with trilobate lateral lobes, and a turbinate-campanulate hypanthium.
Figure 3. *Lachemilla rothmaleriana.* **A** Habit **B** stem, apical leaves **C** stem, basal leaves **D** flowering branch **E** flower. Illustration by S. Cordero.

Type. COLOMBIA. Boyacá: Duitama. Road to páramo de la Rusia, 22 km from Duitama, before ‘fábrica de arepas Buenos Aires’, 5.92656N, 73.08826W, alt. 3650 m, 24 September 2013, Morales-Briones D.F. & Uribe-Convers S. 506. (holotype: ID!, isotypes: ANDES!, QCA!).

Description. Ascendent subshrubs; stems erect to slightly decumbent, up to 22–27 cm long, robust, densely sericeous-villous, branched at apex. Basal stipules usually caducous, if present 5–6 mm long, adnate to the petiole at base, free at apex, entirely membranous, brown. Basal leaves usually caducous, if present 3–6-lobed, 4–6 × 3–6 mm; basal petiole 3–4 mm long. Distal leaves reduced, adnate, and connate to the distal stipules forming verticillate, lobed sheaths; sheath lobes 7–8, ascending to spreading at maturity, lanceolate, one lobe 3–5 lobate, lobes (4) 6–8 × 1–2 (4) mm, (2/3 of the entire sheath length), chartaceous, margin revolute, lower surface appressed
Three new species of *Lachemilla* (Rosaceae) from South America

Figure 4. *Lachemilla rothmaleriana*. A Habit B stems C flowering branch.

Sericeous-villous to villous, upper surface sericeous-villous to glabrescent. Inflorescences terminal or axilar ± glomerulate cymes; floral bracts lobed, ascending; 8–10 flowers per inflorescence; pedicels 0.3–0.4 mm long, pilose. Flowers 1.5–2.5 mm long; hypan-
Figure 5. *Lachemilla rothmaleriana*. Isotype collection: Morales-Briones D.F. & Uribe-Convers S. 506. (QCA).

... thium turbinate-campanulate, brown-reddish at base, pilose-sericeous outside slightly glabrescent at base, glabrous within; 4 epispals and 4 sepals connivent to ± straight, abaxially sericeous, adaxially glabrous; episepals narrowly ovate, 0.8–1 × 0.2–0.3 mm,
Three new species of *Lachemilla* (Rosaceae) from South America

Figure 6. Geographic distribution of *Lachemilla rothmaleriana* (read triangles), *L. argentea* (black circles), and *L. cyanea* (cyan rectangle).

 apex acute; sepals ovate, 0.5–1 × 0.4–0.5 mm, apex ± acute; stamens 2 adnate to the floral disc; carpels 2 (3), stigma clavate. Two achenes 0.8–0.9 × ca. 0.5 mm, subovoid.

Distribution and ecology. *Lachemilla rothmaleriana* has a scattered distribution in the northcentral region of the Cordillera Oriental and in the southern part of the Cordillera Central of the Colombian Andes, between 3250 and 3768 m (Fig. 6). This species is mainly found in páramos dominated by bunchgrasses (*Agrostis, Calamagrostis, Chusquea*) and lives in sympathy with *L. hipidula, L. nivalis*, and *L. purdiei*. Flowering and fruiting collections dated from the months of January, May, September, and December.
Etymology. The specific epithet honors Prof. Dr. Werner Rothmaler (1908–1962), a German botanist who studied *Lachemilla* in detail and described over 20 species of this genus.

Conservation status. *Lachemilla rothmaleriana* is known only from the three localities that are zones impacted by human activities, including conversion to agriculture. Following the IUCN (2017) guidelines, based on the reduced geographic distribution and altered land use at the type locality, this species should be categorized as vulnerable (VU).

Notes. *Lachemilla rothmaleriana* resembles *L. hispidula* and *L. nivalis* by its habit and erect stems with reduced leaves that fuse with the stipules to form verticillate sheaths, but differs by having trilobate lateral lobes. Additionally, *L. hispidula* has an overall hispid pubescence, while *L. rothmaleriana* has a characteristic sericeous-villous indumentum. Moreover, *L. rothmaleriana* has a turbinate-campanulate hypanthium with pilose-sericeous pubescence, while *L. hispidula* has a globose-campanulate hypanthium with pilose-hirsute pubescence. *Lachemilla nivalis* has a hypanthium with similar indumentum but its shape is only slightly campanulate. In the shape of sheath lobes, *L. rothmaleriana* somewhat resembles *L. galioides* (Benth.) Rothm., but the latter has slender stems, broader sheath lobes, and villous-hispid indumentum.

Lachemilla argentea D.F.Morales-B. & Romol., sp. nov.
urn:lsid:ipni.org:names:77199641-1
Figs 7–9

Diagnosis. *Lachemilla argentea* differs from *L. holmgrenii* Rothm. and *L. adscendens* (Rothm.) Rothm. by its herbaceous habit with decumbent branches, conspicuous basal reniform tripartite leaves with an adaxial silvery villous pubescence, and a turbinate to urceolate hypanthium with pilose-sericeous pubescence.

Description. Decumbent herbs; branches decumbent up to 12 cm long, sericeous-villous. Basal stipules 5–10 mm long, adnate to the petiole, sparsely villous, membranous, brown at base, free at apex. Basal leaves tri-parted, blade reniform in outline, 6–7 (–10) × 7.5–10 (–1.3) mm, 3 lobes, chartaceous, slightly plicate, lobes unequally obovate-rhomboid, margin dentate-incised, teeth 3–6 on each of the lobes, lower sur-
Three new species of *Lachemilla* (Rosaceae) from South America

Figure 7. *Lachemilla argentea*. **A** Habit **B** basal leaf **C** stem, apical leaves **D** flower **E** flowering branch. Illustration by C. Rodríguez.

face sparsely sericeous-villous, upper surface villous; basal petiole 5–12 mm long. Distal stipules and distal leaves reduced adnate and connate, forming verticillate lobed sheaths; sheath lobes 6–10 ascending or slightly spreading; lobes 4–7 × 1.5–3 mm,
lanceolate, entire or trilobed, decreasing in size. Inflorescences axilar or terminal glo-merulate cymes, flowers aggregate at the distal part. Floral bracts 2–4 mm long, free, incised, and ascending; 3–7 flowers per inflorescence; pedicels 0.5–1 mm long, slightly pilose. Flowers 2–2.5 mm long; hypanthium turbinate to urceolate, green or reddish, pilose-sericeous outside, glabrous within; 4 episepals and 4 sepals green or slightly reddish, straight, abaxially pilose-sericeous, adaxially glabrous; episepals triangular, 0.7–0.8 × 0.4–0.5 mm, apex acute; sepals triangular-ovate, 0.75–0.85 × 0.5–0.6 mm, apex acute; stamens 2 adnate to the floral disc; carpels 2–3, stigma clavate. Two achenes, ca. 1–1.5 × 0.6–0.8 mm, globose-ovoid.

Mixed specimens examined. The following specimens are collections with two different species under the same number, one (a) correspond to L. argentea. Boyacá:
Three new species of *Lachemilla* (Rosaceae) from South America

Figure 8. *Lachemilla argentea*. A Habit B basal leaves C flowering branch.

Páramo de Pisva, Alto de Granados, 5 km E of Los Pinos, alt. 3735m, 15 June 1972, *Cleef A. 4593A* (a) (COL). **Boyacá**: Güicán Sierra Nevada del Cocuy, after Cabañas Kanwara, 17.7 km from ‘water plant’, Lomas Las Pajas, 6.47093N, 72.35934W,
Deviating specimens examined. The following specimens have similar habit, leaf shape, and pubescence to \textit{L. argentea}, but they only differ in having glabrous flowers. These specimens may represent only a variety of \textit{L. argentea}, but they are maintained here as uncertain taxa until more material is available or can be included in phylogenetic analyses. \textbf{Boyacá}: Páramo NW of Belén, Quebrada Minas. Hoya CLLA, Slopes N of Valle Lajas, alt. 3835 m, 2 March 1973, \textit{Cleef A. 2119A (COL)}. \textbf{Boyacá}: Páramo de Pisva, Road Socha-La Punta, km 61.5, 6 km E from Los Pinos Alto de Granados, alt. 3630 m, 14 June 1972, \textit{Cleef A. 4545 (COL)}. \textbf{Cundinamarca}: Páramo de Palacio aprox. 1 km E from ‘la mina de cal’, alt. 3853 m, 19 May 1972, \textit{Cleef A. 3853A (COL)}. \textbf{Quidio/Tolima}: Paramillo of Quindío and Páramo de Tolima. 13 km from Valle de Cocora. 4.64433N, 75.43060W, alt. 3645 m, 4 October 2013, \textit{Morales-Briones D.F. et al. 543 (ANDES, ID, QCA)}. \textbf{Santander}: Vetas, road to Laguna Pajaritos, 7.33086N, 72.85106W, alt. 3585 m, 14 September 2013, \textit{Morales-Briones D.F. et al. 439 (ANDES, ID, QCA)}.

Distribution and ecology. \textit{Lachemilla argentea} is distributed in the central northern (primarily) regions of the Cordillera Oriental between 3275 and 3735 m (Fig. 6). This species occurs in humid and very humid páramos dominated by grasses, shrubs, and dwarf shrubs. \textit{Lachemilla argentea} can be found living in sympathy with multiple species of \textit{Lachemilla}, including \textit{L. aphanoides}, \textit{L. hispidula}, \textit{L. nivalis}, \textit{L. mandoniana} (Wedd.) Rothm., \textit{L. purdiei}, and \textit{L. vulcanica} (Schltld. \& Cham.) Rydb. Flowering and fruiting collections dated from the months of February, May, June, and September.

Etymology. The specific epithet refers to the silvery aspect of the basal leaves.

Conservation status. \textit{Lachemilla argentea} is a common element throughout its distributional range, and occurs in several well-conserved areas. Following the IUCN (2017) guidelines, we consider this species is not at risk and should be categorized as least concern (LC). Nonetheless, the rapid deterioration and conversion to agriculture of proximate areas where \textit{L. argentea} occurs may put this species at some threat in the near future.

Notes. \textit{Lachemilla argentea} resembles \textit{L. holmgrenii} and \textit{L. adscendens} by having basal tripartite leaves and stem leaves fused to the stipules forming verticillate sheaths with one tripartite lobe that is larger than the remaining lobes, but differs in having an herbaceous habit with decumbent branches, while the other two species are subshrubs with suberect to ascending branches. Furthermore, \textit{L. argentea} has conspicuous basal reniform tripartite leaves with an adaxial silvery villous pubescence, while \textit{L. holmgrenii} and \textit{L. adscendens} have smaller hirsute leaves. These species also vary in the number of sheath lobes; \textit{L. argentea} has 6–10 ascending or slightly spreading lobes, while \textit{L. holmgrenii} and \textit{L. adscendens} have 5–7 loosely ascending to reflexed lobes, and eight erecto-patent lobes, respectively. By having conspicuous basal leaves, \textit{L. argentea} also resembles \textit{L. sprucei}, but the latter is a subshrub with suberect stems and coriaceous 5-parted basal leaves, in addition to distinct 3-parted distal leaves.
Three new species of *Lachemilla* (Rosaceae) from South America

Figure 9. *Lachemilla argentea*. Isotype collection: Morales-Briones D.F. & Uribe-Convers S. 523 (QCA).
Key to *Lachemilla rothmaleriana*, *L. argentea*, and similar species of the Verticillate clade from Colombia

1. Subshrubs with erect or decumbent stems; basal leaves caducous or sessile when present; stem leaves reduced, with the adnate stipule forming verticillate sheaths along the entire stem ... 2
 - Herbs with procumbent or decumbent stems, or subshrubs with suberect or ± decumbent stems; basal leaves petiolate; lower stem leaves subequal to or often longer than the stipules, 3-parted or 3-lobed, uppermost stem leaves reduced, with the adnate stipule forming verticillate sheaths ... 8

2. Outer surface of sheath lobes glabrous or puberulent; lobes 4–6 3
 - Outer surface of sheath lobes conspicuously pubescent; lobes 4–15 4
3. Outer surface of sheath lobes glabrous and reticulate, margins strongly revolute *L. equisetiformis*
 - Outer surface of sheath lobes hispidulous and not reticulate, margins revolute at apex ... *L. ericoides*

4. Plants pilose, villous or sericeous; sheath lobes laxly ascending to erect, basal leaves mainly caducous .. 5
 - Plants hispid, hirsute or villous; sheath lobes widely spreading to abruptly reflexed; basal leaves usually present (except in *L. verticillata*) 6
5. Stems sparsely villous, pilose to glabrescent, or sericeous; sheath lobes 10–15, linear to linear-lanceolate, all lobes entire ... *L. nivalis*
 - Stems densely sericeous-villous; sheath lobes 7–8, lanceolate, one lobe 3–5 lobate ... *L. rothmaleriana*

6. Sheath lobes 7–8 (10); stems villous; sepals and epispals divergent and equal in length; hypanthium villous ... *L. verticillata*
 - Sheath lobes 9–13; stems hispid or hirsute; sepals and epispals connivent, epispals usually a little shorter than the sepals ... 7
7. Plant copiously hirsute; sheath lobes reflexed; hypanthium glabrous *L. galioidea*
 - Plant sparsely hirsute; sheath lobes spreading; hypanthium glabrous or pubescent ... *L. hispidula*

8. Caespitose herbs; stems procumbent or slightly decumbent, multiple branched and rooting .. 9
 - Herbs or subshrubs; stems suberect or ± decumbent, not branched and not rooting .. 10
9. Flowers ca. 2–2.5 mm long, hypanthium campanulate, appressed villous, carpels 5–10; stigma clavate ... *L. holosericea*
 - Flowers ca. 3.5 mm long, hypanthium globose-urceolate, sericeous-villous, carpels 5; stigma subclavate .. *L. purdiei*
Three new species of *Lachemilla* (Rosaceae) from South America

10 Basal leaves 5-parted, coriaceous; flowers ca. 2.5–3.5 long; carpels 5–6... *L. sprucei*
 – Basal leaves 3-parted, not coriaceous; flowers ca. 2–2.5 long; carpels 2–4......
11 Herbs, sericeous-villous; stems decumbent; sheath lobes 6–10, ascending or slightly spreading ... *L. argentea*
 – Subshrubs, villous or hirsute; stems suberect or ascending, sheath lobes 5–8, loosely ascending to reflex ...
12 Stems suberect; sheath lobes 5–7; hypanthium campanulate-globose; carpels 2–3 ... *L. holmgrenii*
 – Stems ascending; sheath lobes 8; hypanthium globose-urceolate; carpels 3–4......
... *L. adscendens*

Lachemilla cyanea D.F. Morales-B. & Romol., sp. nov.
urn:lsid:ipni.org:names:77199642-1
Figs 10–12

Diagnosis. *Lachemilla cyanea* differs from *L. ranunculoides* (L.M. Perry) Rothm. and *L. williamsii* (L.M. Perry) Rothm by its hirsute pubescence, reniform basal leaves that have a blue-green color, and turbinate-campanulate hypanthium.

Description. Rosette herbs up to 10 cm long, branches decumbent, sparsely hirsute. Basal stipules 10 mm long, adnate to the petiole, sparsely hirsute, membranaceous, brown at base, free at apex. Basal leaves tri-parted, blade reniform in outline, 17–20 × 25–26 mm, 3 lobes, chartaceous, slightly plicate, lobes unequally obovate-rhomboid, lateral lobes divided the length 1/2 of the blade, margin dentate-incised, teeth 8–10 on each of the lobes, lower and upper surface sparsely hirsute-villous; basal petiole 12–20 mm long. Distal stipules 7–8 mm long, connate and adnate to the petiole at base, free and incised at apex, leaf-like in texture. Distal leaves tri-parted, 8–10 × 8–12 mm, lobes obovate-rhomboid, decreasing in size; distal petiole 1–2.5 mm long. Inflorescences axilar or terminal glomerulate cymes, flowers aggregate at the distal part. Floral bracts 1–2 mm long, free, incised, and ascending to slightly spreading; 2–6 flowers per inflorescence; pedicels 0.6–1 mm long, sericeous. Flowers 2–2.5 mm long; hypanthium turbinate-campanulate, green, glabrous outside and within; 4 episepals and sepals green to reddish at apex, straight, abaxially and adaxially glabrous; episepals triangular, 0.7–0.8 × 0.3–0.4 mm, apex acute; sepals triangular-ovate, 0.7–0.8 × 0.5 mm, apex acute; stamens 2 adnate to the floral disc; carpels 2, stigma clavate. Two achenes, ca. 1 × 0.7–0.8 mm, globose-ovoid.

Distribution and ecology. *Lachemilla cyanea* is only known from the Province of Abancay in the Department of Apurímac at ca. 3420 m in southern Peru (Fig. 6). This species occurs in the transition zone between the montane forest and the high-elevation grassland dominated by dwarf shrubs and herbs. This species lives in sympatry with *L. aphanoides* and *L. fulvescens*. It was collected in flower and fruit in late June.
Etymology. The specific epithet refers to the blue-green color of the leaves.

Conservation status. *Lachemilla cyanea* is only known from the type locality in a zone severely impacted by human activities, including conversion to agriculture. Fol-
Figure 11. *Lachemilla cyanea*. A Habit B flowering branch.
Three new species of *Lachemilla* (Rosaceae) from South America

following the IUCN (2017) guidelines, based on the reduced geographic distribution and altered land use at the type locality, this species should be categorized as endangered (EN), at least until other populations are discovered.

Notes. *Lachemilla cyanea* resembles *L. ranunculoides* in habit and glabrous flower, but differs in the reniform shape of the basal leaves in contrast to the orbicular-ovate shape of the latter. Moreover, *L. cyanea* has a turbinate-campanulate hypanthium while *L. ranunculoides* has an oblong-ventricose hypanthium. *Lachemilla cyanea* also resembles *L. aphanoides* in the tripartite basal leaves and glomerulate inflorescence, but differs in the rosette habit and decumbent branches, in contrast to the erect stems of *L. aphanoides*. *Lachemilla cyanea* is also similar to *L. williamsii* in habit, but the former has an overall hirsute pubescence and glabrous flowers with strictly two stamens, while the latter has a general villous pubescence, and villous flowers with up to four stamens (a characteristic only known in *L. williamsii)*.

Key to *Lachemilla cyanea* and similar species from the Central Andes

Notes. Includes species with a general prostrate habit, tripartite basal leaves, and mainly glomerulate inflorescences (series *Aphanoides*, subseries 2; *sensu* Perry 1929). Accepted taxa and synonymy follows Morales-Briones et al. (2018a). Adapted from Perry (1929).

1. Herbs with creeping stems, mat-forming; lateral segments of the leaves entire; inflorescences loosely dichotomous; stipules entirely membranaceous. **L. rupestris**
 - Herbs with prostrate or loosely decumbent stems, villous or hirsute; lateral segments of the leaves variously lobed; inflorescences glomerulate cymes; stipules herbaceous at least at apex. .. 2
2. Basal leaves lobes acute; flowers ca. 3 mm long, hirsute-villous to sericeous; stamens 2–4 .. 2 **L. williamsii**
 - Basal leaves lobes obtuse; flowers ca. 2–2.5 mm long, glabrous or with scattering hairs on the hypanthium lobes; stamens 2 ... 3
3. Plants densely sericeous-villous; sepals oblong-ovate. **L. grisebachiana**
 - Plants hirsute or glabrate; sepals ovate .. 4
4. Basal leaves subreniform; cauline leaves mainly subsessile; episepals reduced or absent; carpels 1–2 .. **L. frigida**
 - Basal leaves orbicular or reniform; cauline leaves mainly petiolate; episepals conspicuous, carpels 2–4 .. 5
5. Basal leaf blade reniform; hypanthium turbinate-campanulate; carpels 2............
 - Basal leaf blade orbicular; hypanthium oblong-ventricose; carpels 2–4. **L. ranunculoides**
Acknowledgements

We are grateful to the curators of ANDES, CAS, COL, F, MEXU, HUT, HAO, ID, JE, MO, NY, QCA, TEX and USM for access or loans of their collections. We also thank Santiago Cordero and Carla Rodríguez for the illustrations, Daniela Cevallos for the Type images, and Simon Uribe-Convers for assistance during fieldwork. Funding for this work was provided by a Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) doctoral scholarship sponsored by the Instituto Nacional de Biodiversidad (INABIO) to D.F.M.-B., Graduate Student Research Grants from the Botanical Society of America (BSA), the American Society of Plant Taxonomists (ASPT), the International Association of Plant Taxonomist (IAPT), and the University of Idaho Stillinger Herbarium Expedition Funds to DFM-B, and a National Science Foundation Doctoral Dissertation Improvement Grant to DCT for DFM-B (DEB-1502049). KR was funded by the Pontificia Universidad Católica del Ecuador and the SENESCYT’s ‘Arca de Noe’ Initiative-Project. Access to genomic and computational resources was granted through the University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST) supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health (P30 GM103324).

References

Morales-Briones DF, Tank DC (2019a) Extensive allopolyploidy in the neotropical genus Lachemilla (Rosaceae) revealed by PCR-based target enrichment of the nuclear ribosomal
Three new species of *Lachemilla* (Rosaceae) from South America

Morales-Briones DF, Tank DC (2019b) Data from: Extensive allopolyploidy in the neotropical genus *Lachemilla* (Rosaceae) revealed by PCR-based target enrichment of the nuclear ribosomal DNA cistron and plastid phylogenomics.

Appendix I

Species and vouchers used in the phylogenetic analyses. Arranged by species name and authority, DNA number, and collector and number (herbarium code).

Three new species of Lachemilla (Rosaceae) from South America

Recircumscription of Bredia and resurrection of Tashiroea (Sonerileae, Melastomataceae) with description of a new species T. villosa

Qiu-Jie Zhou¹, Jin-Hong Dai¹, Che-Wei Lin², Tetsuo Denda³, Ren-Chao Zhou¹, Ying Liu¹

¹ State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, No. 135, Xin-Gang-Xi Road, Guangzhou 510275, China ² Herbarium of Taiwan Forestry Research Institute, No. 53, Nan-Hai Road, Taipei 100, Taiwan ³ Laboratory of Ecology and Systematics, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan

Corresponding author: Ren-Chao Zhou (zhrench@mail.sysu.edu.cn); Ying Liu (liliumrosa@163.com)

Academic editor: Ricardo Kriebel | Received 29 May 2019 | Accepted 25 June 2019 | Published 19 July 2019

Abstract

Bredia (Melastomataceae) is an Asian genus that extends from central and southern mainland China to Taiwan and the Ryukyu islands. Molecular phylogenetic analyses reveal that the type of Bredia is nested in a clade of 20 species, while Tashiroea, a genus previously synonymized in Bredia, falls in another distantly related clade of 10 species. Our morphological survey shows that the two clades can be distinguished by several diagnostic features including leaf indumentum, texture, leaf surface sculpture under SEM, presence/absence of yellowish uniseriate trichomes, and capsule morphology. Based on molecular and morphological evidence, Bredia is recircumscribed and Tashiroea is resurrected. Description and a list of species are provided for the two genera with the description of a new species, T. villosa.

Keywords

Bredia, Tashiroea, Sonerileae, Melastomataceae, morphology, taxonomy

Introduction

Bredia Blume (Sonerileae, Melastomataceae) was originally described based on B. hirsuta Blume (Blume 1849), a species in Taiwan and the Ryukyu islands. Later, Ito and Matsumura (1899) established another genus, Tashiroea Matsumura, to accommodate two new species, T. yaeyamensis Matsum. and T. okinawensis Matsum., also discovered...
in the Ryukyus. Diels (1924, 1932) recognized both genera. He added one Chinese species to *Tashiroea* and expanded *Bredia* by describing new species and transferring species from *Blastus* Lour., *Otanthera* Blume and *Fordiophyton* Stapf into *Bredia*. Li (1944) followed Diels's concept of *Bredia* but considered *Tashiroea* to be included within the limits of *Bredia*. He therefore synonymized *Tashiroea*, accommodating its three species within *Bredia* section *Tashiroea* (Li 1944). With additional descriptions of new species and transfers of other species (Hooker 1871; Cogniaux 1891; Diels 1924, 1932; Ohwi 1936; Li 1944, 1945; Lauener 1972; Chen 1984a; Yeh et al. 2008; Zhao et al. 2017; Zhou et al. 2018), *Bredia* as currently circumscribed comprises 18–22 species according to different species delimitations (e.g. Chen 1984b; Chen and Renner 2007), and occurs from northern Vietnam and southern mainland China to Taiwan and the Ryukyu islands.

The generic circumscription of *Bredia* has long been problematic. *Bredia* is morphologically closely related to *Phyllagathis* Blume (Blume 1849; Ito and Matsumura 1899; Li 1944; Chen 1984a; Hansen 1992; Chen and Renner 2007), another Asian genus with overlapping geographical range. Delimitation of the two genera was traditionally based on staminal morphology (equal or only slightly unequal, isomorphic vs. dimorphic, subequal, or distinctly unequal stamens), which is rather obscure when species with subequal stamens are concerned. The vague generic boundary is reflected in the taxonomic history of some species that have been moved back and forth between the two genera by different authors (Diels 1932; Merrill and Chun 1940; Li 1944; Chen 1979, 1984b; Hansen 1992; Chen and Renner 2007) and also in two phylogenetic studies based on very limited taxon sampling (Zeng et al. 2016; Zhou et al. 2018).

A recent molecular phylogenetic study, with extensive sampling of *Bredia* (19 species) and *Phyllagathis* (35 species), has shed new light on their generic delimitation (Zhou et al. 2019). Staminal characters traditionally used to separate *Bredia* and *Phyllagathis* were shown to be highly homoplasious (Zhou et al. 2019). Both genera as currently defined are not monophyletic. To facilitate discussion, we reconstructed a phylogenetic tree using the combined dataset (nrITS and chloroplast *trnV-trnM*) published in Zhou et al. (2019) plus eight newly sequenced species (see methods). As shown in Fig. 1, *Bredia hirsuta*, the type of *Bredia* is clustered within a clade of 20 species, viz. 13 of *Bredia* and seven of *Phyllagathis*, (hereafter referred to as the *Bredia* clade), whereas the two species originally published in *Tashiroea*, *B. yaeyamensis* (Matsum.) H.L. Li (= *T. yaeyamensis*) and *B. okinawensis* (Matsum.) H.L. Li (= *T. okinawensis*), fall in another clade comprising the new species, seven species of *Bredia* and two of *Phyllagathis* (hereafter referred to as the *Tashiroea* clade). The *Bredia* clade is close to *Blastus*, *Fordiophyton* and *Plagiopetalum* Rehder, while the *Tashiroea* clade is most closely related to *Scorpiothyrsus* H.L. Li and *Driessenia axantha* Korth. (Fig. 1). These findings are strongly corroborated by our chloroplast phylogenomic analyses (unpublished), indicating that the *Tashiroea* clade is an independent lineage distantly related to the *Bredia* clade. The same conclusion is also reached in a recently published study, although based on limited sampling of species (Kokubugata et al. 2019). Continued use of the non-monophyletic *Bredia* may hinder further study of this group and cause problems in describing new species, which has led us to update its circumscription.
In this paper, we revisited the morphological characters of the *Bredia* and *Tashiroea* clades in search of possible diagnostic characters. The results are presented below. Based on molecular and morphological evidence, *Bredia* is recircumscribed and *Tashiroea* is resurrected. Descriptions and a list of species are provided for the two genera with the description of a new species *T. villosa*. Thirteen new combinations are made.

Methods

Molecular experiments and phylogenetic analysis

Eight newly sequenced species were added to the combined dataset (nrITS and chloroplast *trnV-trnM*) published in Zhou et al. (2019), including *Driessenia glanduligera* Stapf, *D. phasmolacuna* C.W. Lin, *Phyllagathis hispidissima* (C. Chen) C. Chen, *P. tentacularfera* C. Hansen, *Scorpiothyrsus shangzeensis* C. Chen, *Bredia okinawensis* (= *Tashiroea okinawensis*), *B. yunnanensis* (H. Lév.) Diels, and a new species *T. villosa*. All molecular experiments and phylogenetic analysis using bayesian inference and maximum likelihood methods followed Zhou et al. (2019). A complete list of the taxa sampled in this study, their collection localities, voucher information, and GenBank accession numbers are provided in Suppl. material 1: Table S1.

Morphological comparison

WU) were examined. Habit, shape and texture of the leaves, and inflorescence type were obtained via visual observation. Stamen morphology and capsule morphology were determined by stereomicroscopic (Leica S8APO) examination, leaf epidermal features by desktop SEM (Phenom Pro), and indumentum by both equipment. During observation using Phenom Pro, fresh or dried tissues were directly mounted on stubs and examined without further processing. We failed to obtain the materials of two species recorded in Bredia, namely B. laisherana C.L. Yeh & C.R. Yeh and B. violacea H.L. Li, which were therefore not included in our molecular phylogenetic study. For the two species, we examined their protologue, images of herbarium specimens and color photos from the author of B. laisherana. Species circumscriptions basically follow Chen (1984b). Description of the capsule morphology mainly follows Hansen (1992), while the description of one type of trichomes (sessile glands with thin-walled heads) was taken from Wurdack (1986).

Taxonomy

Diels published several names in Melastomataceae in 1924 and 1932. Although he designated type specimens, he did not specify the place of deposition for them in the protologue. Even if we assume the holotypes existed in the Berlin herbarium (where Diels worked), they were probably destroyed during the Second World War. Therefore, we follow McNeill (2014) and designate lectotypes for those taxa according to the stipulations of Art. 9.12, 9.22 and 9.23 of the Code (Turland et al. 2018). Diels (1932) also lectotypified two names, *Barthea cavaleriei* H. Lév. and *Fordiophyton tuberculatum* Guillaumin, without citing the herbaria where they were housed. For *Barthea cavaleriei*, only one specimen of the gathering designated by Diels is known and is in the Royal Botanic Garden Edinburgh herbarium (E). We accept it as the lectotype of this name and cite the page number of Diels’s lectotypification. For *Fordiophyton tuberculatum*, multiple specimens of the gathering designated by Diels (1932) are mixtures of more than one taxon. Based on Art. 9.17 (Turland et al. 2018), a lectotype corresponding most closely with the original description is designated for this name. *Tashiroea*, *T. yaeyamensis* and *T. okinawensis* were described simultaneously without designation of a type (Ito and Matsumura 1899). We also lectotypify these names here according to Art. 8.1, 8.2, 10.1, and 10.2 (Turland et al. 2018). In general, we select the herbarium sheet with the best-preserved leaves and flowers for lectotypification. Detailed reasoning where the choice may not be obvious is provided at the end of the taxon being discussed.

Results

The combined dataset contained 1768 characters. The phylogenetic tree resulted from ML analysis is shown in Fig. 1 with PP and ML bootstrap support values (BS) indicated at nodes. Phylogenetic relationships within Sonerileae/Dissochaeteae are near-
Figure 1. Maximum likelihood phylogenetic tree of Sonerileae/Dissochateae based on combined dataset of nuclear ribosomal internal transcribed spacer and chloroplast trnV-trnM sequences, showing the phylogenetic position of *Tashiroea* clade and *Bredia* clade. Numbers on the branches are bootstrap values obtained from maximum likelihood analyses (left) and Bayesian posterior probabilities (right) resulting from Bayesian inference. Boxes denote the types of the genera sampled.
ly identical to those reported in Zhou et al. (2019). Both Tashiroea clade (PP=1.00; BS=100%) and Bredia clade (PP=1.00; BS=98%) are well resolved. Among the newly sequenced species, B. okinawensis (= T. okinawensis) and the new species T. villosa are nested in the Tashiroea clade, while B. yunnanensis is grouped in the Bredia clade.

Characters of the Tashiroea clade (10 species) and the Bredia clade (20 species) are summarized in Table 1. Species of the two clades are shrubs or shrublets, except that the latter clade includes some herbs. The mature leaves of species in Tashiroea clade are usually glabrous, stiffly papery to leathery and exhibit furrowed surface sculpture under SEM (Figs 2, 4 A–B, D), except that those of the new species T. villosa are densely pubescent and villous and without furrowed surface sculpture (Fig. 4C). The mature leaves of species in the Bredia clade are usually puberulous and papery and without furrowed surface sculpture (Figs 3, 4 E–L). Species in both clades have sessile glands and

Table 1. Comparison of the Tashiroea clade and the Bredia clade. Potential diagnostic characteristics are indicted in bold.

<table>
<thead>
<tr>
<th>Character</th>
<th>Tashiroea clade</th>
<th>Bredia clade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Habit</td>
<td>Shrubs or shrublets</td>
<td>Shrubs, shrublets or herbs</td>
</tr>
<tr>
<td>Indumentum of mature leaf</td>
<td>Glabrous, rarely pubescent and villous (T. villosa)</td>
<td>Sparsely to densely puberulous or strigose</td>
</tr>
<tr>
<td>Leaf texture</td>
<td>Stiffly papery to leathery</td>
<td>Papery, rarely submembranous</td>
</tr>
<tr>
<td>Leaf surface sculpture</td>
<td>Furrowed, rarely not (T. villosa)</td>
<td>Not furrowed</td>
</tr>
<tr>
<td>Leaf shape</td>
<td>Lanceolate, ovate, elliptic or suborbicular</td>
<td>Lancolate, ovate, cordate, oblong, elliptic, ovate-orticular</td>
</tr>
<tr>
<td>Leaf base</td>
<td>Cuneate, obtuse, rounded, or subcordate</td>
<td>Cuneate, obtuse, rounded, often cordate</td>
</tr>
<tr>
<td>Leaf veins</td>
<td>3–5</td>
<td>5–11, rarely 3 (B. guidongensis)</td>
</tr>
<tr>
<td>Leaf margin</td>
<td>Entire to serrulate</td>
<td>Entire to serrulate</td>
</tr>
<tr>
<td>Indumentum</td>
<td>Sessile gland with thin-walled head; multiseriate trichomes with glandular head or not; appressed uniseriate trichomes with glandular head; yellowish uniseriate trichomes</td>
<td>Sessile gland with thin-walled head; multiseriate trichomes with glandular head or not; appressed or spreading uniseriate trichomes with glandular head or not</td>
</tr>
<tr>
<td>Inflorescence</td>
<td>Cymose, cymose panicle</td>
<td>Cymose, umbellate, or cymose panicle</td>
</tr>
<tr>
<td>Stamens</td>
<td>Dimorphic and isomorphic</td>
<td>Dimorphic and isomorphic</td>
</tr>
<tr>
<td>Staminal appendage of dimorphic stamens</td>
<td>Gibbose, tuberculate or spurred at the base of anthers in shorter stamens; connectives decurrent and prolonged, gibbose or tuberculate dorsally in longer stamens</td>
<td>Gibbose, tuberculate or spurred at the base of anthers in shorter stamens; connectives decurrent and prolonged, gibbose, tuberculate, or spurred ventrally in longer stamens</td>
</tr>
<tr>
<td>Staminal appendage of isomorphic stamens</td>
<td>Slightly gibbose ventrally at the base of the anthers, spurred dorsally</td>
<td>Gibbose or tuberculate at the base of the anthers, sometimes short spurred dorsally</td>
</tr>
<tr>
<td>Ovary top at anthesis</td>
<td>Ovary crown usually evanescent, capsule uncrowned with rounded or 4-humped top; or ovary crown persistent and enlarged, enclosing an obpyramidal space (in T. nudipes and T. oligotricha)</td>
<td>Ovary crown persistent and enlarged, enclosing an inverted frustum-shaped depression at capsule top</td>
</tr>
<tr>
<td>Capsule</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Habitat</td>
<td>Open or dense forests, slopes, stream banks, alt. 50–2300 m</td>
<td>In forest or along forest margin, stream banks, damp places, alt. 100–2500 m</td>
</tr>
<tr>
<td>Distribution</td>
<td>South eastern mainland China, Taiwan, Ryukyu Islands</td>
<td>Central and south mainland China, Taiwan, Ryukyu Islands</td>
</tr>
</tbody>
</table>
Recircumscription of *Bredia* and resurrection of *Tashiroea*...

127

uniseriate/multiseriate trichomes with or without glandular heads (Fig. 5A–C, E–H). Yellowish uniseriate trichomes (branched or unbranched) (Fig. 5D), are present only in the *Tashiroea* clade, where they occur on apical and axillary buds and sometimes on young leaves and branches (Fig. 5M–P). Both clades are quite variable in terms of leaf

Recircumscription of *Bredia* and resurrection of *Tashiroea*...

Recircumscription of *Bredia* and resurrection of *Tashiroea*... 131

shape (lanceolate to suborbicular), *leaf base* (cuneate to cordate), *inflorescence type* (cymose to cymose paniculate), *stamen morphology* (dimorphic to isomorphic), and *staminal appendages* (gibbose, tuberculate, or spurred) (Figs 2–3, 6–7). An ovary crown is present in most species of the *Tashiroea* clade at anthesis (Fig. 8A–D), but is usually evanescent, resulting in uncrowned capsules (Fig. 8I–K). Exceptions are two species traditionally placed in *Phyllagathis*. Their crowns are persistent and enlarged, forming crowned capsules with an obpyramidal depression at the top (Fig. 8L). In species of the *Bredia* clade, an ovary crown is present at anthesis (Fig. 8E–H), and persistent and enlarged in old capsule, enclosing an inverted frustum-shaped depression (Fig. 8M–P).

Field and literature surveys revealed that species of both *Tashiroea* clade and *Bredia* clade prefer shaded or moist habitats in forests or along forest margin, often along stream banks, from 50 m to 2500 m alt. The *Tashiroea* clade occurs in southeastern mainland China and the Ryukyu islands, while the *Bredia* clade, aside from the above areas, also extends to the central and southwestern Chinese provinces of Guizhou, Hubei, Chongqing, Sichuan and Yunnan.

Of the two species without molecular data, *B. laisherana* is endemic to Taiwan and *B. violacea* occurs in northern Vietnam. The former species has glabrous stems and leaves, and uncrowned ovaries and capsules (Yeh et al. 2008), occurring in dense forests, while the latter has puberulous stems, leaves and inflorescences but no habitat record is available.

Discussion

Morphological comparison

Species of the *Tashiroea* clade and *Bredia* clade are similar in habit, habitat preference, most indumentum types, and in having lanceolate, ovate to suborbicular leaves, a cuneate to cordate leaf base, cymose to cymose panicles, dimorphic or isomorphic stamens, and gibbose, tuberculate, or spurred staminal appendages (Figs 2–3, 5–7). Additionally, their range of distribution partly overlaps in southeastern mainland China, and the Ryukyu islands. Therefore, it is quite understandable that Li (1944) considered *Tashiroea* to be congeneric with *Bredia*, where he placed it in synonymy.

However, our survey of morphological characters has shown that the two clades can be distinguished by several diagnostic features, including leaf indumentum, texture, leaf surface sculpture under SEM, presence/absence of yellowish uniseriate trichomes, and capsule morphology. Species of the *Tashiroea* clade differ from those of the *Bredia* clade by the glabrous, stiffly papery to leathery mature leaves with furrowed surface sculpture under SEM (vs. puberulous and papery, without furrowed sculpture) (Figs 2–4), the presence of yellowish uniseriate trichomes on buds (vs. absence) (Fig. 5), and usually uncrowned capsules with a rounded or 4-humped apex, or rarely crowned with an obpyramidal apical depression (vs. capsules crowned, with an inverted frustum-shaped depression) (Fig. 8). *Tashiroea villosa*, the only exception in the *Tashiroea* clade with densely hairy leaves and without furrowed surface sculpture,

nevertheless has yellowish uniseriate trichomes on buds and uncrowned capsules with a 4-humped apex characteristic of this clade. At least some of the above differences, such as indumentum and capsule morphology, had long been noticed by previous authors. Li (1944) established section Tashiroea in Bredia, whereas Hansen (1992) divided Bredia into four groups of species, placing Tashiroea in a separate group.

The two clades are also morphologically distinguishable from their close relatives. Phylogenetic analyses showed that the Tashiroea clade is most closely related to Scorpiothyrsus and Driessenia axantha while Bredia clade is closest to Blastus, Fordiophyton, and Plagiopetalum (Fig. 1). Species in the Tashiroea clade differ from Scorpiothyrsus in the 3–5-veined leaves (vs. 7–9-veined), from Driessenia axantha in inflorescence terminal (vs. axillary), and from both in inflorescence cymose to cymose panicles (vs. often scorpoid cymose panicles), and ventrally gibbose or tuberculate anthers (vs. 2-setose or 2 band-shaped ventral appendages). The Bredia clade is easily distinguished from Blastus by having two whorls of stamens (vs. one), from Fordiophyton by ventrally appendaged anthers (vs. unappendaged and the capsule crown usually exserted from the calyx (vs. not exserted), and from Plagiopetalum by appendaged anthers and crowned capsules (vs. unappendaged and uncrowned).

Species without molecular data

Two species previously placed in Bredia were not sampled in the molecular phylogenetic studies: B. laisherana from Taiwan and B. violacea from north Vietnam. Bredia laisherana was initially identified as B. quadrangularis by Yeh and Yeh (2006) and was later published as a new species (Yeh et al. 2008). It has glabrous stems and leaves, and uncrowded ovaries and capsules (Yeh et al. 2008), which are characteristic of the Tashiroea clade. Bredia vio-
lacea has puberulous stems, leaves and inflorescences (Li 1945). Li (1945) noted that the general appearance and inflorescence characters of B. violacea closely resembled those of B. hirsuta (type of Bredia). Morphological characters therefore suggest that B. laisherana belongs to the Tashiroea clade, and B. violacea to the Bredia clade.
Recircumscription of *Bredia* and resurrection of *Tashiroea*

Conclusion

Morphological evidence and molecular phylogenetic data confirmed that the *Tashiroea* clade and the *Bredia* clade represent two distantly related lineages morphologically well differentiated from each other and from their possible relatives. We therefore resurrect the generic name *Tashiroea* Matsum for the former clade and redefine *Bredia* Blume to include the latter. For the species lack of molecular data, we place *B. laisherana* and *B. violacea* in *Tashiroea* and *Bredia* respectively based on morphology. Species circumscriptions basically follow Chen (1984b). A revision at the species level will be dealt with in another study.

Taxonomy

Description. Shrubs or shrublets, erect, rarely creeping in the lower parts. Stems terete or slightly 4-sided, glabrous or glabrescent, rarely densely hairy (in *T. villosa*), terminal and axillary buds pubescent with yellowish uniseriate branched trichomes. Leaves petiolate; leaf blade lanceolate, ovate, elliptic, rarely suborbicular, stiffly papery to leathery, glabrescent when mature, rarely hairy (in *T. villosa*), secondary veins 1 or 2 on each side of midvein, margin remotely serrulate, or almost entire. Inflorescences terminal, few-flowered cymes to cymose panicles; bract minute, rarely to 1–2 cm long (in *T. villosa*), usually caducous. Flowers 4-merous. Hypanthium campanulate, rarely funnel shaped. Calyx lobes repand, crenate or triangular. Petals pink or purplish red, ovate, oblong to suborbicular, more or less oblique, apex acute or acuminate. Stamens 8, unequal or subequal; filaments filiform; anthers dimorphic or isomorphic, subulate to oblance-oblong-linear, gibbose, tuberculate or spurred at base, sometime unappendaged adaxially. Ovary half inferior, slightly crowned or uncrowned, ovoid-globular or turbinate, 4-celled. Style filiform; stigma apiculate. Capsule cup-shaped or subglobular, more or less 4-sided, woody, uncrowned, apex rounded or 4-humped, or crown persistent and enlarged, enclosing an obpyramidal space (in *T. nudipes* and *T. oligotricha*). Seeds numerous, minute, cuneate, densely granulate. (Figs 2, 6, 5A–D, I–L, 8A–D, I–L)

Distribution. Eleven species, eight in southeastern mainland China (Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hunan, Jiangxi, Zhejiang), one in Taiwan, and two in the Ryukyus (Fig. 9).

Ito and Matsumura (1899) established *Tashiroea* based on *T. yaeyamensis* and *T. okinawensis* without designating a type. The original materials of both species conform to the protologue of *Tashiroea*. We designate *T. yaeyamensis* as the type of *Tashiroea* because this species bears much larger leaves and more flowers than *T. okinawensis*, which may facilitate future molecular and/or morphological analysis of the type materials.
Figure 9. Distribution of *Tashiroea*. Hollow triangles indicate the locations of *Tashiroea villosa*.

Species included in *Tashiroea*:

Tashiroea amoena (Diels) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199697-1

Tashiroea biglandularis (C. Chen) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199698-1

urn:lsid:ipni.org:names:77199699-1

Bredia laisherana C.L. Yeh & C.R. Yeh, Edinburgh J. Bot. 65(3): 400 (–403; figs 3, 4C–D). 2008 (Basionym). Type: Taiwan, Pingtung, Mt Laisher, on the ridge of a mountain and steep valley and in a dense cloudy forest, 1600–1800 m, 15 Sept 2005, C.L. Yeh & C.R. Yeh 33 (holotype: PPI 065514).
Recircumscription of *Bredia* and resurrection of *Tashiroea...*

Tashiroea nudipes (C. Chen) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199700-1

Tashiroea oligotricha (Merr.) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199701-1

Tashiroea quadrangularis (Cogn.) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199702-1

Tashiroea sessilifolia (H.L. Li) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199703-1

Bredia sinensis (Diels) H.L. Li, J. Arnold Arbor. 25: 22. 1944.

Type. China. Fujian: Chung-an District, 27 Jul 1921, H.H. Hu 1343 (lectotype, designated here: A! [A00073233]).

Tashiroea villosa X.X.Su, sp. nov.

urn:lsid:ipni.org:names:77199704-1

Figures 10, 11, 12A–B

Type. China. Fujian: Pingnan County, Lingxia Town, 1000 m, 16 Jul 2017, Y. Liu 568 (holotype: A!; isotype: SYS!).

Diagnosis. Resembles *T. amoena* in height, leaf size and shape, inflorescence and stamen morphology, while differing from the latter in the dense indumentum covering the whole plant and much larger bracts.

Description. Shrubs or shrublets, 20–60 (–90) cm tall. Stem, leaves, peduncles, bracts, pedicels and hypanthium densely pubescent and villous with multiseriate or sometimes uniseriate glandular or non-glandular trichomes. Stems cylindrical, branchlets slightly 4-sided, sometimes rubescent. Leaves opposite; petiole 1.2–4.5 cm long; leaf blade ovate to ovate-elliptic, 4.2–12 × 1.8–6 cm, papery, abaxial surface pale green, adaxial surface green, secondary veins 3 on each side of midvein, base cordate to rounded, margin ciliate and inconspicuously serrulate, apex acuminate or short acuminate. Inflorescences terminal, cymose, 7–14 × 3.5–6.5 cm, bracts 9–19 × 5–8 mm, deciduous or sometimes persist till anthesis. Pedicels 1–3 mm. Hypanthium short campanulate, 4-sided, 3–5 mm long, calyx lobes broadly triangular, 1 mm long, apex acute. Petals purplish pink or pink, ovate to ovate-oblong, 7–10 × 3.5–5 mm, slightly oblique, apex acute. Stamens 8, dimorphic, unequal. Longer stamens antesepalous, ca. 15 mm long; anthers
Recircumscription of *Bredia* and resurrection of *Tashiroea*...

Figure 10. Line illustration of *Tashiroea villosa* (A–G), all from Y. Liu 568. A Habit B Flower (side view) C Longitudinal section of flower, showing slightly crowned ovary D Dimorphic stamens E Capsule (side view) F Capsule (longitudinal section) G Capsule (top view). Scale bar: 1 cm (A).
Figure 11. Y. Liu 568 (A) collected from Lingxia, Pingnan County, Fujian, China, holotype of *Tashiroea villosa*.

lanceolate, ca. 8 mm long, geniculate; connective decurrent, slightly prolonged, forming a short spur dorsally. Shorter stamens antepetalous, ca. 8 mm long, anthers lanceolate, ca. 4 mm long, base gibbose ventrally and forming a short spur dorsally. Ovary half inferior,
locules 4, apex slightly 4-lobed, margin ciliate with glandular trichomes. Style ca. 0.6 cm long, puberulous with glandular trichomes basally. Capsule cup-shaped; hypanthium ca. 4 × 3.5 mm long; placental column distally entire, placentas non-thready. Seeds numerous, minute, cuneate, granulate. Flowering July-August, fruiting August-October.

Etymology. The specific epithet refers to the dense pubescent and villous indumentum.

Distribution and ecology. *Tashiroea villosa* is currently known from Pingnan, Jianou and Jianyang, northern Fujian, China (Fig. 9). It often grows in grasses and bushes along streamside at elevations of 900–1400 m.

Notes. *Tashiroea villosa* is discovered by Mr. Xiang-xiu Su. He is an amateur collector in Fujian who had made an important contribution to the description of this new species. We therefore include him as the author of this name. *Tashiroea villosa* is the sole species currently known in *Tashiroea* with densely puberulous and villous leaves (vs. glabrous) and smooth leaf surface sculpture (vs. furrowed). It is morphologically and phylogenetically closest to *T. amoena*. The two species are similar in height, leaf size and shape, inflorescence and stamen morphology. *Tashiroea villosa* is distinct from *T. amoena* in the dense indumentum covering the whole plant (vs. petioles and

Figure 12. *Tashiroea villosa* (A–B) and *T. amoena* (C–D). A Habit B Inflorescence showing large bracts C Habit D Inflorescence showing minute bracts. Photographed by Xiang-xiu Su (A, C) and Ying Liu (B, D).
inflorescences pubescent or sometimes glabrescent) and much larger bracts (9–19 × 5–8 mm vs. 1–2 × 1 mm) in the florescence (Fig. 12). Geographically, *T. amoena* is widely distributed in southeastern China (Anhui, Fujian, Zhejiang, Jiangxi, Guangxi), whereas *T. villosa* occurs in northern Fujian where both species occur. Nevertheless, they have not been found to co-occur within the same habitat.

Description. Shrubs, shrublets or herbs, erect, ascending or creeping. Stems terete or more or less 4-sided, sparsely to densely puberulous, rarely glabrescent. Leaves petiolate; leaf blade ovate, cordate, oblong, elliptic, ovate-orbicular, rarely lanceolate, papery, rarely submembranous, sparsely to densely puberulous or strigose, secondary veins 2–5 on each side of midvein, margin serrulate or entire. Inflorescences terminal, umbellate, cymes or cymose panicles. Flowers 4-merous. Hypanthium funnel shaped to campanulate. Calyx lobes conspicuous, linear-lanceolate to triangular. Petals pink or purplish red, ovate to oblong, more or less oblique, apex acute or acuminate. Stamens 8, unequal or subequal; filaments filiform; anthers dimorphic or isomorphic, subulate to oblong-linear, gibbose, tuberculate or spurred at base, rarely unappended abaxially. Ovary half inferior, crowned, ovoid, 4-celled. Style filiform; stigma apiculate. Capsule turbinate to cup-shaped, more or less 4-sided, crown persistent and enlarged, enclosing an inverted frustum-shaped depression at capsule apex. Seed numerous, minute, cuneate, densely granulate. (Figs 3, 7, 5E–H, M–P, 8E–H, M–P)

Distribution. Twenty-one species: 15 in central and southern mainland China (Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangxi, Sichuan, Chongqing, Yunnan, Zhejiang), one in north Vietnam, five in Taiwan and one extending to the Ryukyu islands (Fig. 13).

Species included in *Bredia*:

Type. China. Jiangxi: Chongyi County, Niedu Town, 579 m, 1 Aug 2016, W. Y. Zhao et al. LXP-13-22114 (holotype: SYS!; isotype: IBSC!).

Recircumscription of *Bredia* and resurrection of *Tashiroea*...

Figure 13. Distribution of *Bredia*.

Type. Taiwan, Taitung, Mt Dulan, on the ridge of a mountain, 1000–1200 m, 14 Oct 2007, S.W. Chung, T.C. Hsu & C.R. Yeh 16 (holotype: TAIF! [TAIF348619]; isotypes: TAIF! [TAIF348620, TAIF348621, TAIF348622]).

Otanthera fordii Hance, *J. Bot.* 19: 47. 1881 (Basionym). Type: China. Hong Kong, Jul 1880, C. Ford. herb no. 21099 (lectotype, designated here: BM! [BM000629024]; isolecotype BM! [BM000629025]).

Bredia fordii var. micrantha (C. Chen) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199705-1

Type. Taiwan. Pingtung, Sungshan, J. Ohwi s.n. (holotype: KYO! [KYO00022400]).

urn:lsid:ipni.org:names:77199706-1

Type. Japan. K. Ito s.n. (lectotype, designated here: L! [L0170980]).
In the protologue, Blume (1849) cited no specimen but the name “Rhexia fasi-kan” (should be Rhexia hasikan, see below) attached to a specimen from Von Siebold’s herbarium. Ohba and Akiyama (pers. comm.) discovered one sheet with the name “Rhexia hasikan” in the herbarium in Leiden (L0170980). The sheet contains two col-
Recircumscription of *Bredia* and resurrection of *Tashiroea*...

lections, a smaller one covered by paper on the upper part and a larger one with four branches on the middle and lower part. According to Ohba (pers. comm.), the epithet “hasikan” comes from the Japanese name of *B. hirsuta*, viz. “Hashikan-boku”. This sheet is regarded as the type material of *B. hirsuta*. We here designate the larger collection on the sheet as the lectotype of *B. hirsuta*.

Type. Taiwan, inter Suiteiryō et Niki, C. Owatari, Jan 1898 (the date “1896” cited in the protologue is probably erroneous) (lectotype, designated here: TI! [TI00002337]; isolectotype: TI!, [TI00002339]).

Bredia latisepala (C. Chen) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199707-1

Type: China. Hubei: Hefeng, ad pedes montis calcareo, 18 Sept 1958, H.J. Li 6451 (holotype: IBSC! [IBSC0003996]; isotype: PE! [PE00025692]).

Bredia longearistata (C. Chen) R.C.Zhou & Ying Liu, comb. nov.
urn:lsid:ipni.org:names:77199708-1

Type: Based on Barthea cavaleriei H. Lév.

Bredia longiradiosa var. pulchella (C. Chen) R.C.Zhou & Ying Liu, comb. nov. urn:lsid:ipni.org:names:77199709-1

Notes. Three gatherings were cited in the protologue of Barthea cavaleriei, viz. Cavalerie 1552, Esquirol 1581 and Esquirol 215, without designation of a type. Two of the syntypes, Esquirol 1581 and 215 were later cited as the types of Barthea esquirolii H. Lév. (1913) and Barthea blinii H. Lév. (1913), respectively. Guillaumin (1913) transferred Barthea cavaleriei to Fordiophyton citing only Cavalerie 1552 under the new combination F. cavaleriei (H. Lév.) Guillaumin. Diels (1932) formally designated Cavalerie 1552 as the lectotype and published a new combination Bredia cavaleriei (H. Lév.) Diels. However, this name is an illegitimate later homonym of B. cavaleriei H. Lév. & Vaniot (see Art. 53.1). Chen (1979) published the replacement name B. longiradiosa C. Chen for this species, but he did not provide a full reference of the basionym, which makes the name invalid (see Art. 41.1). Chen (1984b) subsequently transferred the species to Phyllagathis. As the epithet cavaleriei is also not available in Phyllagathis, a new name P. longiradiosa C. Chen was published together with the description of a new variety, P. longiradiosa var. pulchella C. Chen. There are three effectively published names for this species in Bredia. With B. cavaleriei (H. Lév.) Diels illegitimate and B. longiradiosa C. Chen invalid, the only legitimate name, B. longiradiosa C. Chen ex Govaerts is adopted as the correct name for this species.

Recircumscription of *Bredia* and resurrection of *Tashiroea*...

Bredia oldhamii Hook. f., Icon. Pl. 11: 68, pl. 1085. 1871.

Bredia plagiopetala (C. Chen) R.C.Zhou & Ying Liu, comb. nov. urn:lsid:ipni.org:names:77199710-1

Type. China. Hunan: Sangzhi County, from Shayuan to Nanmuping village, 430–470 m, 11 Nov 2016, Y. Liu 558 (holotype: SYS!; isotypes: A! SYS!).

Type. Taiwan, Chiayi, Juili, Ou 2869 (holotype: NCUF).

Notes. Three gatherings were cited in the protologue of *Fordiophyton tuberculatum*, viz. Delavay 5053, Ducloux 2192 and Wilson 4906. Diels (1932) designated Delavay 5053 as the type without citing a specific herbarium. We located four duplicates of Delavay 5053 (E00285959, P02274729, P02274730, P02274731). Close examination of the specimens revealed that this gathering is a mixture of *B. tuberculata* and *B. yunnanensis*. Individuals on E00285959, P02274731 and the one on the right side of P02274729
conform to the protologue of *B. tuberculata* in the adaxially white punctate leaves and unequal and dimorphic stamens. The remaining four individuals (three on P02274730 and one on the left side of P02274729) conform to the holotype of *B. yunnanensis* in the absence of white spots on their leaves and the subequal and isomorphic stamens. According to Art. 9.11, 9.12, 9.14, and 9.17 (Turland et al. 2018), the lectotypification by Diels should be accepted and further narrowed to a single specimen that corresponds most closely with the original description. We therefore designate E00285959 as the lectotype as it conforms to the description and contains many well-preserved leaves and flowers.

Type. China. Yunnan: Mengzi, 1000–2300 m, A. Henry 13479 (lectotype, designated here: K! [K000867582]; isolectotypes: A! [A00055334] NY! [NY00221472]).

Acknowledgements

We thank curators and staff of herbaria cited in the text for permission to examine the specimens or high-resolution photos of them, especially Akiko Shimizu (TI) who kindly searched for original material to facilitate lectotypification. We are deeply grateful to Dr. Hideaki Ohba and Dr. Shinobu Akiyama for providing important information regarding the type materials of *B. hirsuta*; Dr. David E. Boufford, Dr. Fabian A. Michel-angeli and Dr. Susanne S. Renner for their valuable comments on the manuscript; Dr. Bing-lan Zhang for her help with leaf surface scanning using Phenom Pro. This work
was supported by the National Natural Science Foundation of China (31770214) and the Science, Technology Planning Project of Guangdong Province (2015A030302011) and Chang Hungda Science Foundation of Sun Yat-sen University.

References

Hooker JD (1871) Bredia oldhamii. Hooker’s Icones Plantarum 11: 68.

Supplementary material 1

Table S1. Source of materials studied and GenBank accession numbers for nrITS and chloroplast intergenic spacer trnV-trnM

Authors: Qiu-Jie Zhou, Jin-Hong Dai, Che-Wei Lin, Tetsuo Denda, Ren-Chao Zhou, Ying Liu

Data type: molecular data

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/phytokeys.127.36608.suppl1