Research Article |
Corresponding author: Qinzheng Hou ( hou_qzh@nwnu.edu.cn ) Corresponding author: Kun Sun ( nwnubotany@163.com ) Academic editor: Clifford Morden
© 2023 Xiang Zhao, Yingying Liu, Jigang Li, Hui Zhang, Lingyun Jia, Qinzheng Hou, Kun Sun.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Zhao X, Liu Y, Li J, Zhang H, Jia L, Hou Q, Sun K (2023) Numerical analyses of seed morphology and its taxonomic significance in the genus Oxytropis DC. (Fabaceae) from northwestern China. PhytoKeys 222: 49-67. https://doi.org/10.3897/phytokeys.222.96990
|
The lack of diagnostic taxonomic characteristics in some species complexes leave the species delimitation of Oxytropis DC. unresolved. Seed morphological features have proved to be useful diagnostic and taxonomic characteristics in Fabaceae. However, there are few systematic studies on the seed characteristics of Oxytropis. Here, we used scanning electron and stereoscopic microscopy to investigate the seed characteristics of 35 samples obtained from 21 Oxytropis species from northwest China. Our examination showed two main types of hilum positions, terminal and central, and five different types of seed shapes: prolonged semielliptic, reniform, prolonged reniform, quadratic, and cardiform. Seven different sculpturing patterns were identified: scaled, regulated, lophate with stellated testa cells, simple reticulate, rough, compound reticulate, and lophate with rounded testa cells. The seeds ranged from 1.27 to 2.57 mm in length and from 1.18 to 2.02 mm in width, and the length-to-width ratio ranged from 0.89 to 1.55 mm. The seed shape was constant within species and was useful for species delimitation within the genus Oxytropis when combined with other macroscopic traits. In contrast, the sculpturing patterns were highly variable at the species level and could not be used for species identification. Results of the cluster analysis and principal component analysis (PCA) indicated that the seed traits of Oxytropis species are useful for taxa identification at the species level, but have low taxonomic value at the section level.
China, cluster analysis, Oxytropis, PCA, seed morphology, SEM, taxonomy
The genus Oxytropis DC. belongs to the tribe Galegeae (Fabaceae: Papilionoideae). It has been reported to be one of the largest groups of angiosperms, comprising approximately 330 species. The genus is distributed mainly in the cold mountainous regions of Asia, Europe, and North America (
The genus Oxytropis was first established in 1802 by De Candolle (
Seed morphological features, such as seed shape, hilum shape, sculpturing pattern, and size, have been proven to be useful diagnostic and taxonomic characteristics in some genera of Fabaceae and other families (
Seeds of Oxytropis species were first studied by
Numerical taxonomy, also known as phenetics, mathematical taxonomy and multivariate morphometrics (
Northwest China is one of the main distribution regions of the genus Oxytropis (
The present study was mainly based on seeds collected in the field, with only a few seeds obtained from herbarium vouchers housed at the herbarium of Northwest Normal University (
Section | Code | Species | Locality | Coordinates | Voucher | Collection date |
---|---|---|---|---|---|---|
Section Xerobia | 1 | O. ciliata Turcz. | Yueliang Mountain | 36°25'41.85"N, 105°42'23.71"E | X. Zhao 1947 | 2019 |
Section Polyadena | 2 | O. muricata (Pall.) DC. | Maxian Mountain | 35°47'46.48"N, 103°58'12.64"E | X. Zhao 1903 | 2019 |
3 | O. muricata (Pall.) DC. | Tiemu Mountain | 35°58'32.21"N, 104°46'31.40"E | X. Zhao 1970 | 2019 | |
Section Falcicarpae | 4 | O. falcata Bunge | Awangcang wetland park | 33°45'32.85"N, 101°41'6.58"E | X. Zhao 1842 | 2018 |
5 | O. falcata Bunge | Beach of Maqu section of Yellow River | Unknown | Gannan Grassland Team 60B | Unknown | |
Section Baicalia | 6 | O. ochrantha Turcz. | Xinglong Mountain | 35°45'52.41"N, 104°2'21.66"E | X. Zhao 1813 | 2018 |
7 | O. ochrantha Turcz. | North mountain of Pingliang | 35°33'49.11"N, 106°41'2.34"E | X. Zhao 1837 | 2018 | |
8 | O. bicolor Bunge | Unknown | Unknown | Unknown 790043 | Unknown | |
9 | O. bicolor Bunge | Tiemu Mountain | 35°58'32.21"N, 104°46'31.40"E | X. Zhao 1927 | 2019 | |
10 | O. racemosa Turcz. | Yanchi | 37°43'52.02"N, 107°23'55.77"E | X. Zhao 1946 | 2019 | |
11 | O. myriophylla (Pall.) DC. | Erdaogou | 35°25'19.39"N, 106°40'6.25"E | X. Zhao 1831 | 2018 | |
12 | O. myriophylla (Pall.) DC. | Anguo | 35°38'49.75"N, 106°28'54.92"E | X. Zhao 1833 | 2018 | |
13 | O. myriophylla (Pall.) DC. | Maxian Mountain | 35°47'46.48"N, 103°58'12.64"E | X. Zhao 1836 | 2018 | |
Section Neimonggolicae | 14 | O. neimonggolica C.W.Chang & Y.Z.Zhao | Helan Mountain | 38°39'37.76"N, 105°48'34.42"E | X. Zhao 1948 | 2019 |
Section Eumorpha | 15 | O. imbricata Kom. | Liancheng National Nature Reserve | 36°36'24.65"N, 102°49'34.30"E | X. Zhao 1809 | 2018 |
16 | O. imbricata Kom. | Taohe River | 34°33'28.66"N, 102°34'53.99"E | X. Zhao 1940 | 2019 | |
17 | O. coerulea (Pall.) DC. | Taitong Mountain | 35°30'8.94"N, 106°35'54.90"E | X. Zhao 1832 | 2018 | |
18 | O. coerulea (Pall.) DC. | Erdaogou | 35°25'19.39"N, 106°40'6.25"E | X. Zhao 1833 | 2018 | |
19 | O. holanshanensis H.C.Fu | Helan Mountain | 38°39'37.76"N, 105°48'34.42"E | X. Zhao 1949 | 2019 | |
Section Mesogaea | 20 | O. xinglongshanica C.W.Chang | Maxian Mountain | 35°46'46.16"N, 103°59'19.19"E | X. Zhao 1913 | 2019 |
21 | O. xinglongshanica C.W.Chang | Xinglong Mountain | 35°46'20.53"N, 104°1'2.49"E | X. Zhao 1910 | 2019 | |
22 | O. glabra (Lam.) DC. | Rabah Lake National Nature Reserve | 37°42'3.19"N, 107°2'33.46"E | X. Zhao 1950 | 2019 | |
23 | O. kansuensis Bunge | Azi Test Station of LZU | 33°39'57.96"N, 101°52'22.44"E | X. Zhao 1819 | 2018 | |
24 | O. kansuensis Bunge | Charlie temple | 32°45'7.95"N, 102°3'26.83"E | X. Zhao 1820 | 2018 | |
25 | O. taochensis Kom. | Liupan Mountain | 35°33'21.81"N, 106°25'21.54"E | X. Zhao 1838 | 2018 | |
26 | O. ochrocephala Bunge | Nanhuang Mountain | 36°22'42.67"N, 105°39'26.20"E | X. Zhao 1952 | 2019 | |
27 | O. ochrocephala Bunge | Xinglong Mountain | 35°47'5.17"N, 104°0'0.67"E | X. Zhao 1828 | 2018 | |
28 | O. ochrocephala Bunge | Maxian Mountain | 35°46'46.60"N, 103°59'19.33"E | X. Zhao 1953 | 2019 | |
29 | O. ochrocephala Bunge | Jinqiang River | 37°13'36.45"N, 102°41'3.46"E | X. Zhao 1840 | 2018 | |
30 | O. ochrocephala Bunge | Hougou Village | 35°48'47.34"N, 103°57'53.83"E | X. Zhao 1954 | 2019 | |
31 | O. qinghaiensis Y.H.Wu | Labrang Monastery | 35°11'8.91"N, 102°30'37.00"E | X. Zhao 1822 | 2018 | |
Section Oxytropis | 32 | O. latibracteata Jurtz. | Helan Mountain | 38°39'46.59"N, 105°49'20.25"E | X. Zhao 1951 | 2019 |
33 | O. qilianshanica C.W.Chang & C.L.Zhang | Jinqiang River | Unknown | J.Q. Wang 710113 | Unknown | |
Section Lycotriche | 34 | O. aciphylla Ledeb. | Jiji Spring Nature Reserve | 38°59'43"N, 101°55'39"E | X. Zhao 1924 | 2019 |
Section Leucopodia | 35 | O. squammulosa Candolle | Shaochagou | 35°42'57.20"N, 105°2'21.20"E | X. Zhao 1928 | 2019 |
Seed shapes and surface sculpturing were classified according to previous studies on the microscopic morphology of Fabaceae seeds (
Cluster analysis and principal component analysis (PCA) were performed using the Origin 2022 software (
The studied seeds, all from the genus Oxytropis, had two main types of hilum positions, terminal and central, and five different types of seed shapes: prolonged semielliptic, reniform, prolonged reniform, quadratic, and cardiform (Table
Seed shape of the studied species A O. ciliata B O. muricata (MX) C O. muricata (TM) D O. falcata (AWC) E O. falcata (MQ) F O. ochrantha (XL) G O. ochrantha (NMP) H O. bicolor (U) IO. bicolor (TM) J O. racemosa K O. myriophylla (EDG) L O. myriophylla (AG) M O. myriophylla (MX) N O. neimonggolica O O. imbricata (LC) P O. imbricata (TR). Scale bar: 500 μm.
Seed shape of the studied species A O. coerulea (TT) B O. coerulea (EDG) C O. holanshanensis D O. xinglongshanica (MX) E O. xinglongshanica (XL) F O. glabra G O. kansuensis (AZ) H O. kansuensis (CT) I O. taochensis J O. ochrocephala (NH) K O. ochrocephala (XL) L O. ochrocephala (MX) M O. ochrocephala (JQ) N O. ochrocephala (HG) O O. qinghaiensis P O. latibracteata Q O. qilianshanica R O. aciphylla S O. squammulosa. Scale bar: 500 μm.
Seed morphological features of Oxytropis under scanning electron microscopy.
Section | Code | Species | Shape of seed | Sculpturing | Hilum position |
---|---|---|---|---|---|
Section Xerobia | 1 | O. ciliata | Cardiform | Scaled | Central |
Section Polyadena | 2 | O. muricata (MX) | Cardiform | Rugulate | Central |
3 | O. muricata (TM) | Cardiform | Rugulate | Central | |
Section Falcicarpae | 4 | O. falcata (AWC) | Cardiform | Rugulate | Central |
5 | O. falcata (MQ) | Cardiform | Rugulate | Central | |
Section Baicalia | 6 | O. ochrantha (XL) | Cardiform | Lophate with stellated testa cells | Central |
7 | O. ochrantha (NMP) | Cardiform | Rugulate | Central | |
8 | O. bicolor (U) | Cardiform | Rough | Central | |
9 | O. bicolor (TM) | Cardiform | Simple reticulate | Central | |
10 | O. racemosa | Prolonged Reniform | Rough | Terminal | |
11 | O. myriophylla (EDG) | Reniform | Rugulate | Central | |
12 | O. myriophylla (AG) | Reniform | Rough | Central | |
13 | O. myriophylla (MX) | Reniform | Rugulate | Central | |
Section Neimonggolicae | 14 | O. neimonggolica | Prolonged Reniform | Scaled | Terminal |
Section Eumorpha | 15 | O. imbricata (LC) | Prolonged Reniform | Rugulate | Terminal |
16 | O. imbricata (TR) | Prolonged Reniform | Rough | Terminal | |
17 | O. coerulea (TT) | Prolonged Reniform | Rugulate | Terminal | |
18 | O. coerulea (EDG) | Prolonged Reniform | Rugulate | Terminal | |
19 | O. holanshanensis | Cardiform | Compound reticulate | Central | |
Section Mesogaea | 20 | O. xinglongshanica (MX) | Prolonged Reniform | Lophate with stellated testa cells | Terminal |
21 | O. xinglongshanica (XL) | Prolonged Reniform | Lophate with stellated testa cells | Terminal | |
22 | O. glabra | Prolonged Reniform | Rugulate | Terminal | |
23 | O. kansuensis (AZ) | Cardiform | Rugulate | Central | |
24 | O. kansuensis (CT) | Cardiform | Rugulate | Central | |
25 | O. taochensis | Prolonged Reniform | Lophate with stellated testa cells | Terminal | |
26 | O. ochrocephala (NH) | Quadratic | Rugulate | Terminal | |
27 | O. ochrocephala (XL) | Quadratic | Rugulate | Terminal | |
28 | O. ochrocephala (MX) | Quadratic | Rugulate | Terminal | |
29 | O. ochrocephala (JQ) | Quadratic | Rugulate | Terminal | |
30 | O. ochrocephala (HG) | Quadratic | Rugulate | Terminal | |
31 | O. qinghaiensis | Reniform | Compound reticulate | Central | |
Section Oxytropis | 32 | O. latibracteata | Reniform | Rugulate | Central |
33 | O. qilianshanica | Reniform | Rough | Central | |
Section Lycotriche | 34 | O. aciphylla | Prolonged Semielliptic | Simple reticulate | Central |
Section Leucopodia | 35 | O. squammulosa | Cardiform | Lophate with rounded testa cells | Central |
The seeds ranged from 1.27 mm (O. kansuensis (AZ)) to 2.57 mm (O. coerulea (EDG)) in length and from 1.18 mm (O. qinghaiensis) to 2.02 mm (O. holanshanensis) in width (Table
Section | Code | Species | Length Min. (mean ± SD) max./mm | Width Min. (mean ± SD) max./mm | L/W ratio | Seed weight/g |
---|---|---|---|---|---|---|
Section Xerobia | 1 | O. ciliata | 1.54(2.43±0.36)3.28 | 1.34(2.05±0.28)2.8 | 1.19±0.07 | 0.3521±0.0236 |
ection Polyadena | 2 | O. muricata (MX) | 1.38(2.02±0.3)2.91 | 1.1(1.78±0.26)2.38 | 1.14±0.07 | 0.2627±0.0041 |
3 | O. muricata (TM) | 1.41(2.04±0.29)2.66 | 1.15(1.66±0.23)2.03 | 1.24±0.18 | 0.248±0.013 | |
Section Falcicarpae | 4 | O. falcata (AWC) | 1.59(2.14±0.25)2.79 | 1.42(1.87±0.18)2.35 | 1.15±0.13 | 0.2981± 0.0106 |
5 | O. falcata (MQ) | 1.7(2.09±0.14)2.5 | 1.45(1.86±0.17)2.15 | 1.13±0.13 | 0.323±0.005 | |
Section Baicalia | 6 | O. ochrantha (XL) | 1.29(1.65±0.17)2.09 | 1.18(1.53±0.16)2 | 1.07±0.07 | 0.2148±0.0091 |
7 | O. ochrantha (NMP) | 1.16(1.49±0.17)1.84 | 1.15(1.35±0.12)1.6 | 1.1±0.07 | 0.1732±0.0021 | |
8 | O. bicolor (U) | 1.09(1.57±0.23)1.98 | 1.21(1.49±0.17)1.88 | 1.05±0.06 | 0.146±0.013 | |
9 | O. bicolor (TM) | 1.32(1.74±0.21)2.31 | 1.23(1.65±0.23)2.32 | 1.06±0.08 | 0.1326±0.0086 | |
10 | O. racemosa | 1.24(1.71±0.17)2.19 | 0.77(1.23±0.14)1.5 | 1.4±0.12 | 0.1668±0.0128 | |
11 | O. myriophylla (EDG) | 1.05(1.56±0.21)2.14 | 0.81(1.25±0.19)1.64 | 1.26±0.1 | 0.1290±0.0004 | |
12 | O. myriophylla (AG) | 1.26(1.59±0.13)1.93 | 0.94(1.32±0.16)1.63 | 1.22±0.09 | 0.1231±0.0007 | |
13 | O. myriophylla (MX) | 1.06(1.67±0.23)2.1 | 1.04(1.45±0.16)1.9 | 1.15±0.07 | 0.1349±0.0043 | |
Section Neimonggolicae | 14 | O. neimonggolica | 1.85(2.11±0.12)2.32 | 1.54(1.72±0.12)1.98 | 1.23±0.04 | 0.326±0.01 |
Section Eumorpha | 15 | O. imbricata (LC) | 1.77(2.44±0.27)2.93 | 1.1(1.59±0.2)2.05 | 1.54±0.11 | 0.3188±0.0054 |
16 | O. imbricata (TR) | 1.79(2.36±0.31)3.13 | 1.08(1.56±0.27)2.34 | 1.52±0.12 | 0.3264±0.0112 | |
17 | O. coerulea (TT) | 1.66(2.39±0.25)2.96 | 1.22(1.69±0.21)2.11 | 1.43±0.12 | 0.2799±0.0016 | |
18 | O. coerulea (EDG) | 1.99(2.57±0.16)2.92 | 1.44(1.86±0.15)2.2 | 1.39±0.09 | 0.2986± 0.0013 | |
19 | O. holanshanensis | 1.81(2.21±0.19)2.66 | 1.43(2.02±0.22)2.58 | 1.1±0.09 | 0.3264±0.0062 | |
Section Mesogaea | 20 | O. xinglongshanica (MX) | 1.56(2.32±0.32)3.22 | 1.29(1.93±0.29)2.69 | 1.21±0.1 | 0.2914±0.0038 |
21 | O. xinglongshanica (XL) | 1.47(2.23±0.23)2.7 | 1.42(1.77±0.16)2.24 | 1.26±0.11 | 0.2763±0.0103 | |
22 | O. glabra | 0.93(1.78±0.33)2.63 | 0.84(1.53±0.27)2.23 | 1.16±0.09 | 0.1892±0.0066 | |
23 | O. kansuensis (AZ) | 0.87(1.27±0.2)1.9 | 0.91(1.28±0.17)1.69 | 0.99±0.09 | 0.1074±0.0057 | |
24 | O. kansuensis (CT) | 0.95(1.38±0.13)1.65 | 1.05(1.44±0.17)1.77 | 0.97±0.11 | 0.1260±0.0044 | |
25 | O. taochensis | 1.54(2.09±0.25)2.73 | 1.08(1.55±0.18)1.89 | 1.36±0.11 | 0.2236±0.0134 | |
26 | O. ochrocephala (NH) | 1.22(1.73±0.22)2.23 | 1.35(1.91±0.23)2.53 | 0.9±0.06 | 0.2719±0.0043 | |
27 | O. ochrocephala (XL) | 1.1(1.63±0.17)2.03 | 1.23(1.77±0.24)2.39 | 0.92±0.07 | 0.2517±0.0103 | |
28 | O. ochrocephala (MX) | 1.28(1.64±0.17)2.01 | 1.56(1.82±0.12)2.14 | 0.9±0.07 | 0.2417±0.0065 | |
29 | O. ochrocephala (JQ) | 0.92(1.56±0.23)2.06 | 1.23(1.75±0.21)2.43 | 0.89±0.08 | 0.2506±0.0098 | |
30 | O. ochrocephala (HG) | 1.02(1.66±0.26)2.28 | 1.43(1.8±0.14)2.27 | 0.92±0.11 | 0.2854±0.0123 | |
31 | O. qinghaiensis | 1.2(1.56±0.18)1.99 | 0.93(1.18±0.11)1.56 | 1.33±0.1 | 0.1058±0.0087 | |
Section Oxytropis | 32 | O. latibracteata | 1.5(2.05±0.25)2.64 | 1.2(1.69±0.21)2.19 | 1.22±0.1 | 0.2368±0.0106 |
33 | O. qilianshanica | 1.38(1.57±0.08)1.71 | 1.09(1.31±0.1)1.49 | 1.2±0.05 | 0.112±0.008 | |
Section Lycotriche | 34 | O. aciphylla | 1.36(1.99±0.28)2.81 | 1.01(1.43±0.21)1.98 | 1.39±0.12 | 0.1822±0.0094 |
Section Leucopodia | 35 | O. squammulosa | 1.22(1.81±0.25)2.61 | 0.95(1.62±0.29)2.37 | 1.13±0.09 | 0.2070±0.0117 |
Seven different seed surface sculpturing patterns were observed: scaled, regulate, lophate with stellated testa cells, simple reticulate, rough, compound reticulate, and lophate with rounded testa cells (Table
Seed surface sculpturing of the studied species A O. ciliata B O. muricata (MX) C O. muricata (TM) D O. falcata (AWC) E O. falcata (MQ) F O. ochrantha (XL) G O. ochrantha (NMP) H O. bicolor (U) I O. bicolor (TM) J O. racemosa K O. myriophylla (EDG) L O. myriophylla (AG) M O. myriophylla (MX) N O. neimonggolica O O. imbricata (LC) P O. imbricata (TR). Scale bar: 5 μm.
Seed surface sculpturing of the studied species A O. coerulea (TT) B O. coerulea (EDG) C O. holanshanensis D O. xinglongshanica (MX) E O. xinglongshanica (XL) F O. glabra G O. kansuensis (AZ) H O. kansuensis (CT) I O. taochensis J O. ochrocephala (NH) K O. ochrocephala (XL) L O. ochrocephala (MX) M O. ochrocephala (JQ) N O. ochrocephala (HG) O O. qinghaiensis P O. latibracteata Q O. qilianshanica R O. aciphylla S O. squammulosa. Scale bar: 5 μm.
In the present study, principal components analysis (PCA) indicates three groups of traits, which explain 82.81% of the total variation (Table
PCA variable loading characters of seed micro-morphology of studied Oxytropis species.
PCA variable loadings | PC1 | PC2 | PC3 |
---|---|---|---|
Shape of seed | -0.01682 | -0.32175 | 0.7042 |
Sculpturing | -0.24237 | 0.44835 | 0.07685 |
Hilum position | 0.33478 | -0.18679 | 0.5441 |
Length | 0.50744 | 0.37518 | 0.00087 |
Width | 0.48498 | -0.23663 | -0.28718 |
L/W ratio | 0.14335 | 0.68091 | 0.32905 |
Seed weight | 0.56183 | -0.01324 | -0.10682 |
Eigenvalue | 2.90597 | 1.55275 | 1.33831 |
Variability/% | 41.51384 | 22.18208 | 19.11869 |
Cumulative/% | 41.51384 | 63.69592 | 82.81461 |
Seed morphology of the investigated species was determined for the first time in the present study. Seed characteristics, such as coat pattern, shape, and size, have been shown to be important for the classification within genera of Fabaceae species (
The sculpturing pattern of seeds is thought to provide useful information for the infrageneric classification of some genera of Fabaceae (
Previous studies on Oxytropis have suggested that seed characteristics, such as size (length, width, and length/width ratio), shape, surface sculpturing, and weight have low taxonomic value at the infrageneric level (
To date, a comprehensive phylogenetic study of the genus Oxytropis has not been carried out. Moreover, even though several studies have utilized DNA barcodes such as ITS, trnL-F, and psbA-trnH to investigate the molecular phylogeny of Oxytropis in northwest China, the low genetic difference of these barcodes among species makes it difficult to distinguish species within this genus and solve the phylogenetic relationship among its species (
Our results suggest that the seed traits of Oxytropis are helpful for identifying taxa at the species level, but have low taxonomic value at the section level. Seed shape was constant within species and was useful for species delimitation in the genus Oxytropis when combined with other macroscopic traits. The seed sculpturing patterns were highly variable at the species level and could not be used for species identification. Although quantitative traits and some qualitative traits, such as seed sculpturing patterns, are highly variable within species, these traits still play an important role in PCA and cluster analysis. The results of the PCA and cluster analysis showed that different populations of the same species were clustered into one clade, indicating that in Oxytropis, seed traits are useful for the identification of taxa at the species level. However, species belonging to different sections also clustered into the same clade, indicating that seed characteristics have low taxonomic value at the section level.
This work was supported by the Gansu Key Research and Development Project-Agriculture (grant number 18YF1NA051), Gansu Provincal Talent development Project (grant number 20220401), and National Natural Science Foundation of China (32260054).
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.