Research Article
Print
Research Article
A phylogeny of the Triraphideae including Habrochloa and Nematopoa (Poaceae, Chloridoideae)
expand article infoPaul M. Peterson, Konstantin Romaschenko, Yolanda Herrera Arrieta§
‡ National Museum of Natural History, Washington DC, United States of America
§ Instituto Politécnico Nacional, Durango, Mexico
Open Access

Abstract

To investigate the evolutionary relationships among species of the tribe Triraphideae (including two monotypic genera, Habrochloa and Nematopoa), we generated a phylogeny based on DNA sequences from nuclear ribosomal (ITS) and four plastid markers (rps16-trnK, rps16 intron, rpl32-trnL, and ndhA intron). Habrochloa and Nematopoa form a clade that is sister to Neyraudia and Triraphis. Member of the Triraphideae have paniculate inflorescences, 3-veined, marginally ciliate lemmas, usually with hairy lateral veins, that are apically bifid and awned from between a sinus. A description of the Triraphideae and key to the genera is provided, and the biogeography is discussed, likely originating in Africa.

Keywords

Classification, Habrochloa, molecular phylogenetics, Nematopoa, Neyraudia, Triraphideae, Triraphis

Introduction

Clayton and Renvoize (1986) pointed out that Neyraudia R. Br. was perhaps an ally of Triraphis R. Br. since both genera possess slender microhairs and the two have keeled lemmas that are villous on the lateral veins (Watson and Dallwitz 1992). Based on DNA sequence studies Bouchenak-Khelladi et al. (2008) were first to show strong support for Neyraudia and Triraphis as being sister in the subfamily Chloridoideae Kunth ex Beilschm. Hilu and Alice (2001) and Bouchenak-Khelladi et al. (2008), using the same matK sequence marker placed these two genera in the subtribe Uniolinae Clayton, now a member of tribe Eragrostideae Stapf. Another DNA sequence study supported the placement of the NeyraudiaTriraphis clade as being sister to remaining species in the Chloridoideae and, subsequently, the tribe Triraphideae P.M. Peterson [based on subtribe Triraphidinae Stapf (1917)] was erected to include these two genera (Peterson et al. 2010). Using unpublished DNA sequence phylogenies (Peterson and Romaschenko, unpubl.), the monotypic Habrochloa C.E. Hubb., was added to the Triraphideae in the classification of all genera within the Poaceae (Soreng et al. 2015, 2017).

Hubbard (1935, 1957a, b) transferred Triraphis longipes Stapf & C.E. Hubb. to Crinipes Hochst. (Arundinoideae) since it possessed a bearded callus, then later moved it to a new monotypic genus, Nematopoa C.E. Hubb. Nematopoa was included in the Arundinoideae by Clayton and Renvoize (1986). In more recent classifications (Soreng et al. 2015, 2017), Nematopoa longipes (Stapf & C.E. Hubb.) C.E. Hubb. was placed as a synonym of Triraphis as originally described. Based on unpublished DNA sequence phylogenies (Peterson and Romaschenko, unpubl.), Soreng et al. (2022) and Gallaher et al. (2022) placed Nematopoa in the Triraphideae. Therefore, the current concept of the Triraphideae consists of four genera, Habrochloa, Nematopoa, Neyraudia, and Triraphis.

Habrochloa bullockii C.E. Hubb. is a small, delicate, African annual (culms 10–25 cm tall) with a fringe of hairs for a ligule and delicate panicles bearing 3–5-flowered spikelets, each including awned, apically bifid, marginally ciliate lemmas that bear trigonous caryopses, whereas Nematopoa longipes is a caespitose, southern African perennial (culms 30–80 cm tall) with ciliate, membranous ligules and capillary panicles bearing 4–7-flowered spikelets, each including awned, apically bifid, marginally ciliate lemmas (Clayton et al. 2016). Neyraudia consists of four reedlike perennials [culms (0.8–) 1–5 m tall], a cartilaginous ridge with a line of hairs apically for a ligule, and plumose panicles bearing 3–8-flowered spikelets, each including awned, apically bifid lemmas that are ciliate marginally and along lateral veins; three species in tropical and temperate Asia and one species in Africa (Watson et al. 1992; Filgueiras and Zuloaga 1999; Guala 2003; Clayton et al. 2016). Triraphis consists of eight annual or perennials (culms 4−140 cm tall) with membranous ligules or a fringe of hairs and open or contracted (rarely spiciform) panicles bearing 4−24-flowered spikelets, each including apically 3-lobed and 3-awned lemmas that are ciliate marginally and villous along the lateral veins, and trigonous caryopses; six species in Africa, one in Australasia and one in South America (Watson et al. 1992; Nightingale and Weiller 2005; Clayton et al. 2016).

In the present phylogenetic study, using DNA sequences from nuclear ribosomal (ITS) and four plastid markers (rps16-trnK, rps16 intron, rpl32-trnL, and ndhA intron), we include for the first time Habrochloa bullockii, Nematopoa longipes, and Neyraudia arundinacea (L.) Henrard with two other species of Neyraudia and five species of Triraphis. In addition, we include a description of the Triraphideae, key to the genera in the tribe, and hypothesize its biogeographical history.

Materials and methods

Detailed methods for DNA extraction, amplification, and sequencing are given in Romaschenko et al. (2012) and Peterson et al. (2010, 2014a, b, 2015a, b, 2016). We used Geneious Prime 2020 (Kearse et al. 2012) for contig assembly of bidirectional sequences of ndhA intron, rpl32-trnL, rps16 intron, rps16-trnK and ITS regions, and implemented in Geneious Muscle algorithm (Edgar 2004) to align the sequences and adjust the final alignment. The maximum likelihood parameters for each region were estimated with GARLI 2.0 (Zwickl 2006) and were used as priors in Bayesian calculations to infer overall phylogeny. The Bayesian tree was constructed using MrBayes v3.2.7 (Huelsenbeck and Ronquist 2001; Ronquist et al. 2012). All compatible branches were saved. The Bayesian analysis was initiated with random starting trees sampling once per 100 generations and continued until the value of the standard deviation of split sequences dropped below 0.01 indicating convergence of the chains. The effective sample size (ESS) value for all the parameters was greater than 200 and the first 25% of the sampled values were discarded. Maximum likelihood bootstrap analyses (Felsenstein 1985) were performed using GARLI with 1000 repetitions. The resulted file containing 1000 trees from the bootstrap analysis was then read into PAUP* v.5.0 (Swofford 2000) to compute the majority rule consensus tree.

Our study was designed to test relationships among species residing in four genera (Habrochloa, Nematopoa, Neyraudia, and Triraphis) attributed to the Triraphideae. Representative species from all remaining tribes (Centropodieae P.M. Peterson, N.P. Barker & H.P. Linder, Cynodonteae Dumort., Eragrostideae Stapf, and Zoysieae Benth.) in the Chloridoideae have been included to test the monophyly of the tribe (Peterson et al. 2010). In addition, the phylogeny includes two species from the Danthonioideae, Danthonia compressa Austin and Merxmuellera drakensbergensis (Schweick.) Conert, and one species from the Panicoideae, Chasmanthium latifolium (Michx.) H.O. Yates, which was used as an outgroup.

Results and discussion

Thirty-five new sequences (16%) from five species (nine individuals) are newly reported in GenBank, along with all other sequences for 48 individuals and 41 species included in this study (Table 1). Total aligned characters, numbers of sequences, proportion of invariable sites, and other parameters are noted in Table 2. The resulting plastid and ITS topologies were inspected for conflicting nodes with ≥ 95% posterior probabilities. No supported conflict was found so plastid and ITS sequences were combined.

Table 1.

Taxon voucher (collector, number, and where the specimen is housed), country of origin, and GenBank accession for DNA sequences of rps16-trnK, rps16 intron, rpl32-trnL, ndhA intron, and ITS regions; bold indicates new accession; a dash (–) indicates missing data, an asterisk (*) indicates sequences not generated in our lab.

Taxon Voucher Country rps16-trnK rps16 intron rpl32-trnL ndhA intron ITS
1 Centropodia glauca (Nees) Cope Davidse 6367 (US) South Africa JF729075 JF729175 JF729164 JF729164
2 Centropodia mossamedensis (Rendle) Cope Schweickerdt 2250 (US) South Africa JF729076 JF729182 JF729176
3 Chasmanthium latifolium (Michx.) H.O. Yates Peterson 22463 (US) USA, Maryland GU360517 GU360438 GU359891 GU359379 GU359319
4 Chloris barbata Sw. Peterson 22255& Saarela (US) Mexico, Sinaloa GU360514 GU360435 GU359873 GU359377 GU359320
5 Cottea pappophoroides Kunth Peterson 21463, Soreng, LaTorre & Rojas Fox (US) Peru, Ancash GU360600 GU360456 GU359842 GU359363 GU359237
6 Danthonia compressa Austin Peterson 21986 & Levine (US) USA, North Carolina GU360521 GU360483 GU359865 GU359370 GU359345
7 Eleusine indica (L.) Gaetrn. Peterson 21362, Saarela & Flores Villegas (US) Mexico, Mexico GU360496 GU360472 GU359797 GU359473 GU359338
8 Eleusine poiflora (Chiov.) Chiov. Burger 2915 (US) Ethiopia GU360601 GU360457 GU359843 GU359236
9 Ellisochloa rangei (Pilg.) P.M. Peterson & N.P. Barker Barker 960 (BOL) Namibia JF729079 JF729184 JF729166 JQ345167
10 Enneapogon scaber Lehm. Sachse 008 (MO) South Africa, Western Cape JQ345237 JQ345279 JQ345322 JQ345208 JQ345168
11 Entoplocamia aristulata (Hack. & Rendle) Stapf Seydel 187 (US) South Africa GU360492 GU360468 GU359793 GU359469 GU359342
12 Eragrostis kennedyae F. Turner Latz 13486 (MO) Australia JQ345238 JQ345281 JQ345323 JQ345209 JQ345169
13 Eragrostis wiseana (C.A. Gardner & C.E. Hubb.) R.L. Barrett & P.M. Peterson Peterson 14345, Soreng & Rosenberg (US) Australia, Western Australia GU360703 GU360288 GU359986 GU359533 GU359137
14 Gouinia virgata var. robusta J.J. Ortíz Reeder 4714 & Reeder (US) Mexico, Zacatecas KF827775 KF827710 KF827639 KF827584 KF827521
15 Gymnopogon grandiflorus Roseng., B.R. Arill. & Izag. Peterson 16642 & Refulio-Rodriguez (US) Peru, Apurimac GU360581 GU360383 GU359816 GU359436 GU359200
16 Habrochloa bullockii C.E. Hubb. Peterson 23927b, Soreng, Romaschenko & Abeid (US) Tanzania, Ruvuma ON012448 ON012442 ON012427 ON012435 OM980631
17 Leptocarydion vulpiastrum (De Not.) Stapf Peterson 24238, Soreng & Romaschenko (US) Tanzania KF827792 KF827725 KF827660 KF827595 KF827539
18 Leptochloa digitata (R.Br.) Domin Risler 476 & Kerrigan (MO) Australia, Northern Territory JQ345246 JQ345289 JQ345331 JQ345213 JQ345178
19 Leptothrium senegalense (Kunth) Clayton Belsky 336 (MO) Kenya KF827795 KF827728 KF827663 KF827597 KF827542
20 Merxmuellera drakensbergensis (Schweikerdt) Conert Mafa 4 (GRA) South Africa JF729078 JF729183 JF729165
21 Monelytrum luederitzianum Hack. Smook 10031 (US) South Africa GU360682 GU360421 GU359969 GU359459 GU359158
22 Mosdenia leptostachys (Ficalho & Hiern) Clayton Schweickerdt 1542 (US) South Africa GU360681 GU360420 GU359967 GU359458 GU359159
23 Muhlenbergia japonica Steud. Soreng 5240, Peterson & Sun Hang (US) China, Yunnan HM143667 HM143571 HM143183 HM143388 HM143081
24 Neesiochloa barbata (Nees) Pilg. Swallen 4491 (US) Brazil GU360724 GU360279 GU360005 GU359122
25 Nematopoa longipes (Stapf & C.E. Hubb.) C.E. Hubb. Simon 2353 Africa MF035992* MF035992* MF035992* MF035992*
26 Neyraudia arundinacea (L.) Henrard Peterson 23991, Soreng, Romaschenko & Abeid (US) Tanzania, Njomba ON012449 ON012443 ON012428 ON012436 OM980632
27 Neyraudia reynaudiana (Kunth) Keng ex Hitchc. Columbus 5302 (RSA) KF356392* KF356392* KF356392* KF356392*
28 Neyraudia reynaudiana (Kunth) Keng ex Hitchc. Soreng 5318, Peterson & Sun Hang (US) China, Yunnan GU360272 GU360003 GU359397 GU359124
29 Neyraudia reynaudiana (Kunth) Keng ex Hitchc. Srisanga 97923, Norsaengsri, Unwin, Rodda, Schuettpelz, Tin Tin Mu & Ling Shein Man (US) China, Myanmar ON012429 OM980633
30 Pappophorum pappiferum (Lam.) Kuntze Peterson 21689, Soreng, La Torre & Rojas Fox (US) Peru, Ancash GU360700 GU360276 GU359996 GU359402 GU359128
31 Perotis indica (L.) Kuntze Peterson 23880, Soreng & Romaschenko (US) Tanzania KF827801 KF827734 KF827669 KF827601 KF827546
32 Psilolemma jaegeri (Pilg.) S.M. Phillips Peterson 24247, Soreng & Romaschenko (US) Tanzania KM011122 KM010919 KM010695 KM010535 KM010326
33 Sporobolus virginicus (L.) Kunth Peterson 15683 & Soreng (US) Chile, Region I GU360610 GU360362 GU359892 GU359502 GU359215
34 Tragus berteronianus Schult. FLSP 457 (US) Peru GU360616 GU360370 GU359898 GU359503 GU359224
35 Tridens flavus var. chapmanii (Small) Shinners McCauley 438 (MO) USA, Missouri KF827817 KF827751 KF827689 KF827615 KF827568
36 Triplasis americana P. Beauv. Kral 12065 (MO) USA, Georgia KF827818 KF827752 KF827690 KF827616 KJ768887
37 Triraphis andropogonoides (Steud.) E. Phillips Mennell s.n. (US) South Africa, Cape Province GU360654 GU360335 GU359949 ON012437
38 Triraphis mollis R. Br. Lazarides 046 & Palmer (US) Australia, Uluru National Park ON012430 OM980634
39 Triraphis mollis R. Br. Peterson 14344, Soreng & Rosenberg (US) Australia, Western Australia GU360669 GU360336 GU359933 GU359539 GU359187
40 Triraphis mollis R. Br. Saarela 1608, Peterson, Soreng & Judziewicz (US) Australia, Northern Territory ON012450 ON012444 ON012431 ON012438 OM980635
41 Triraphis mollis R. Br. Saarela 1615, Peterson, Soreng & Judziewicz (US) Australia, Northern Territory ON012451 ON012445 ON012432 ON012439 OM980636
42 Triraphis mollis R. Br. Saarela 1648, Peterson, Soreng & Judziewicz (US) Australia, Northern Territory ON012452 ON012446 ON012433 ON012440 OM980637
43 Triraphis mollis R. Br. Saarela 1656, Peterson, Soreng & Judziewicz (US) Australia, Northern Territory ON012453 ON012447 ON012434 ON012441 OM980638
44 Triraphis purpurea Hack. Schweickerdt 2115 (US) Namibia GU360652 GU360337 GU359932 GU359549
45 Triraphis ramosissima Hack. Seydel 4278 (US) Namibia GU360651 GU360338 GU359931 GU359541 GU359188
46 Triraphis schinzii Hack. Smook 1933 (US) South Africa GU360650 GU360339 GU359930
47 Uniola condensata Hitchc. Peterson 9342 & Judziewicz (US) Ecuador, Chimborazo GU360649 GU360340 GU359927 GU359534 GU359191
48 Zoysia macrantha subsp. walshii M.E. Nightingale Loch 435 (US) Australia GU360642 GU360345 GU359922 GU359548 GU359197
Table 2.

Characteristics of the five DNA regions (rps16-trnK, rps16 intron, rpl32-trnL, ndhA and ITS) and parameters used as priors in Bayesian analyses estimated with GARLI. 2.0.

Characteristic rps16-trnK rps16 intron rpl32-trnL ndhA intron Combined plastid data ITS Overall
Total aligned characters 887 1046 844 1146 3923 769 4692
Number of sequences 45 45 46 42 178 41 219
Number of new sequences 6 (13%) 6 (13%) 8 (17%) 7 (17%) 27 (15%) 8 (20%) 35 (16%)
Likelihood score (-lnL) 3909.0 3405.6 3778.7 4281.4 7973.0
Number of substitution types 6 6 6 6
Model for among-sites rate variation gamma Gamma gamma gamma
Substitution rates 1.2071 2.7093 0.4083 1.5405 2.9778 1.0000 1.2951 1.2876 0.3028 1.1547 2.0746 1.0000 1.0625 1.7914 0.3251 1.4401 1.5146 1.0000 0.9848 2.5216 0.2912 1.9389 2.3679 1.0000 1.1422 2.6273 1.7222 0.6568 4.5253 1.0000
Character state frequencies 0.3088 0.1363 0.1462 0.4084 0.3779 0.1226 0.1743 0.3251 0.3693 0.1380 0.1222 0.3703 0.3669 0.1348 0.1484 0.3497 0.2404 0.2374 0.2582 0.2641
Proportion of invariable sites 0.1666 0.3154 0.0413 0.2537 0.2547
Gamma shape parameter (α) 2.1848 1.0833 0.9498 1.0636 0.9409

The Bayesian tree from the combined plastid and ITS regions is well resolved (Fig. 1). Most clades have posterior probabilities equal to 1.00 and additional bootstrap values of 90% or greater. There is strong support for Habrochloa bullockii + Nematopoa longipes sister to a monophyletic Neyraudia with three individuals of N. reynaudiana (Kunth) Keng ex Hitchc. sister to one individual of N. arundinacea (type of the genus) plus a monophyletic Triraphis. The Triraphis clade includes six individuals of T. mollis R. Br. (type of the genus as treated by Burbidge 1946 and Peterson et al. 2022) sister to T. schinzii Hack. and T. ramosissima Hack. sister to T. andropogonoides (Steud.) E. Phillips + T. purpurea Hack. Our molecular data clearly support independent recognition of Nematopoa since it is sister to Habrochloa and not a member of the Triraphis clade.

Figure 1. 

Maximum-likelihood tree inferred from combined plastid (rps16-trnK, rps16 intron, rpl32-trnL, and ndhA intron) and ITS sequences. Numbers above branches are posterior probabilities; numbers below branches are bootstrap values; thick branches indicate bootstrap ≥ 90% and posterior probabilities of 1.00; DAN = Danthonioideae; tribes within the Chloridoideae = *, include: CEN = Centropodieae, TRI = Triraphideae, ERA = Eragrostideae, ZOY = Zoysieae, and CYN = Cynodonteae. Scale bar: 2%.

Habrochloa bullockii and Nematopoa longipes are clearly aligned within the Triraphideae, and together with Neyraudia and Triraphis, share the following salient morphological features: paniculate inflorescences, 3-veined, marginally ciliate lemmas, usually with hairy lateral veins, and lemmas that are apically bifid and awned from between the sinus (Watson and Dallwitz 1992; Watson et al. 1992; Peterson et al. 2010; Clayton et al. 2016). Another probable synapomorphy for these four genera is possession of panicoid-type bicellular microhairs (long, narrow basal and terminal cells; Amarasinghe and Watson 1988). Watson et al. (1992) verified the presence of panicoid bicellular microhairs for Habrochloa, Nematopoa, and Triraphis but indicate that they are absent in Neyraudia arundinacea. However, Clayton and Renvoize (1986) previously indicated that Neyraudia possesses slender microhairs similar to those in Triraphis.

Based on a sample containing Nematopoa, Neyraudia, and Triraphis, Gallaher et al. (2022) determined the crown age (10.62 Ma) and stem age (46.76 Ma) of the Triraphideae. Although at least three species of Neyraudia include tropical and temperate Asia in their distribution, Africa is the most likely area of origin for the Triraphideae since all four genera in the tribe include species distributed in Africa. In addition, the Triraphideae shares a common ancestor with Centropodieae, also from Africa and temperate Asia (Peterson et al. 2011). Because more than half of the genera of Chloridoideae reside in Africa and the larger tribes, i.e., the Eragrostideae and Zoysieae have centers of diversity there, Hartley and Slater (1960) earlier concluded that the subfamily probably originated on the African continent and spread to other parts of the world (Bouchenak-Khelladi et al. 2008; Peterson et al. 2007, 2010, 2011, 2014c).

Taxonomy

Triraphideae P.M. Peterson, Molec. Phylogen. Evol. 55(2): 591. 2010 ≡ Triraphidinae Stapf, Fl. Trop. Afr. 9: 22. 1917 – Type: Triraphis R. Br., Prodr. 185. 1810.

Description

(emendation). Annuals or perennials, sometimes rhizomatous or reedlike (Neyraudia) culms 4–500 cm tall, erect or decumbent; ligules membranous and ciliate or a fringe of hairs; inflorescence a panicle, open to contracted, rarely spiciform; spikelets 2–15 mm long, 3–24-flowered, laterally compressed; glumes usually shorter than the spikelets or upper glume 2 × as long as adjacent lemma (Habrochloa), 0-, 1- or 3-veined, membranous, sometimes hyaline, apex entire to mucronate, rarely awned; lemmas membranous, rarely cartilaginous, 3-veined with ciliate or pilose margins, lateral veins, if present, usually hairy and sometimes extending as awns (Triraphis), apex bifid and awned from between the sinus; paleas 0.5 to as long as lemma, 2-veined; stamens 3; caryopses with adherent pericarp, often trigonous to ellipsoid, sometimes linear.

Included genera

Habrochloa, Nematopoa, Neyraudia, Triraphis.

Key to the genera

1 Lemmas 3-awned, the lateral veins extending into awns Triraphis
Lemmas 1-awned, the lateral veins never extending into awns 2
2 Culms (80–) 100–500 cm tall, generally 1–1.5 cm wide at base, often woody; plants perennial, reedlike; ligules cartilaginous at base, apically with a line of hairs; panicles 30–80 cm long, plumose Neyraudia
Culms 10–80 cm tall, ≤ 3 mm wide at base, herbaceous; plants annual not reedlike; ligules membranous with a fringe of hairs, not cartilaginous at base; panicles 2–30 cm long, not plumose 3
3 Spikelets 2–2.5 mm long; lemmas 1–1.3 mm long, 3-veined, awned, the awns 4–6 mm long; upper glumes 2 × as long as adjacent lemma Habrochloa
Spikelets 6–10 mm long; lemmas 3.5–4.3 mm long, 1-veined, awned, the awns 8–13 mm long; upper glumes 0.5–0.6 × as long as adjacent lemma Nematopoa

Acknowledgements

We thank the National Geographic Society Committee for Research and Exploration (Grant No. 8848-10, 8087-06) for field and laboratory support; the Smithsonian Institution’s Restricted Endowments Fund, the Scholarly Studies Program, Research Opportunities, Atherton Seidell Foundation, Biodiversity Surveys and Inventories Program, Small Grants Program, the Laboratory of Analytical Biology, and the United States Department of Agriculture. We thank Neil Snow, Clifford W. Morden, and Ana Isabel Honfi for suggesting changes to the manuscript.

References

  • Bouchenak-Khelladi Y, Salamin N, Savolainen V, Forest F, Bank M, Chase MW, Hodkinson TR (2008) Large multi-gene phylogenetic trees of the grasses (Poaceae): Progress towards complete tribal and generic level sampling. Molecular Phylogenetics and Evolution 47(2): 488–505. https://doi.org/10.1016/j.ympev.2008.01.035
  • Burbidge NT (1946) Foliar anatomy and the delimitation of the genus Triodia R. Br. Blumea (Supplement 3): 83–89.
  • Clayton WD, Renvoize SA (1986) Genera graminum. Grasses of the world. Kew Bulletin, Additional Series 13: 1‒389.
  • Clayton WD, Vorontsova MS, Harman KT, Williamson H (2016 onwards) GrassBase - The online World grass flora: The Board of Trustees, Royal Botanic Gardens. http://www.kew.org/data/grasses-db.html [accessed 23 December 2021]
  • Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32(5): 1792–1797. https://doi.org/10.1093/nar/gkh340
  • Filgueiras TS, Zuloaga FO (1999) A new Triraphis (Poaceae: Eragrostideae) from Brazil: First record of a native species in the New World. Novon 9(1): 36–42. https://doi.org/10.2307/3392114
  • Gallaher TJ, Peterson PM, Soreng RJ, Zuloaga FO, Li DZ, Clark LG, Tyrrell CD, Welker CAD, Kellogg EA, Teisher JK (2022) [in press] Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae. Journal of Systematics and Evolution.
  • Guala GF (2003) 17.08 Neyraudia Hook. f. In: Barkworth ME, Capels KM, Long S, Piep MB (Eds) Flora of North America North of Mexico, Vol. 25, Magnoliophyta: Commelinidae (in part): Poaceae, part 2. Oxford University Press, New York, 30–32.
  • Hartley W, Slater C (1960) Studies on the origin, evolution, and distribution of the Gramineae III. The tribes of the subfamily Eragrostoideae. Australian Journal of Botany 8: 256–276. https://doi.org/10.1071/BT9600256
  • Hilu KW, Alice LA (2001) A phylogeny of Chloridoideae (Poaceae) based on matK sequences. Systematic Botany 26: 386–405.
  • Hubbard CE (1935) Notes on African Grasses: XVIII. Bulletin of Miscellaneous Information (Royal Botanic Gardens, Kew) 5: 306–311. https://doi.org/10.2307/4107133
  • Hubbard CE (1957a) Notes on African Grasses: XXVII. Crinipes Hochst., a genus of grasses from North East Tropical Africa. 12: 54–58. https://doi.org/10.2307/4109105
  • Hubbard CE (1957b) Notes on African grasses: XXV. Nematopoa, a new genus from Southern Rhodesia. Kew Bulletin 12(1): 51–52. https://doi.org/10.2307/4109103
  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A (2012) GeneiousBasic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics [Oxford, England] 28(12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  • Nightingale ME, Weiller CM (2005) Triraphis. In: Mallet K (Ed.) Flora of Australia. Volume 44B. Poaceae 3. Australian Biological Resources Study, Canberra, ACT, Australia, 424–426.
  • Peterson PM, Romaschenko K, Johnson G (2010) A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Molecular Phylogenetics and Evolution 55(2): 580–598. https://doi.org/10.1016/j.ympev.2010.01.018
  • Peterson PM, Romaschenko K, Barker NP, Linder HP (2011) Centropodieae and Ellisochloa, a new tribe and genus in the Chloridoideae (Poaceae). Taxon 60(4): 1113–1122. https://doi.org/10.1002/tax.604014
  • Peterson PM, Romaschenko K, Herrera Arrieta Y (2014a) A molecular phylogeny and classification of the Cteniinae, Farragininae, Gouiniinae, Gymnopogoninae, Perotidinae, and Trichoneurinae [Poaceae: Chloridoideae: Cynodonteae]. Taxon 63(2): 275–286. https://doi.org/10.12705/632.35
  • Peterson PM, Romaschenko K, Soreng RJ (2014b) A laboratory guide for generating DNA barcodes in grasses: a case study of Leptochloa s.l. (Poaceae: Chloridoideae). Webbia 69(1): 1–12. https://doi.org/10.1080/00837792.2014.927555
  • Peterson PM, Romaschenko K, Herrera Arrieta Y, Saarela JM (2014c) A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae). Taxon 63(6): 1212–1243. https://doi.org/10.12705/636.19
  • Peterson PM, Romaschenko K, Herrera Arrieta Y (2015a) A molecular phylogeny and classification of the Eleusininae with a new genus, Micrachne (Poaceae: Chloridoideae: Cynodonteae). Taxon 64(3): 445–467. https://doi.org/10.12705/643.5
  • Peterson PM, Romaschenko K, Herrera Arrieta Y (2015b) Phylogeny and subgeneric classification of Bouteloua with a new species, B. herrera-arrietae (Poaceae: Chloridoideae: Cynodonteae: Boutelouinae). Journal of Systematics and Evolution 53(4): 351–366. https://doi.org/10.1111/jse.12159
  • Peterson PM, Romaschenko K, Herrera Arrieta Y (2016) A molecular phylogeny and classification of the Cynodonteae (Poaceae: Chloridoideae) with four new genera: Orthacanthus, Triplasiella, Tripogonella, and Zaqiqah; three new subtribes: Dactylocteniinae, Orininae, and Zaqiqahinae; and a subgeneric classification of Distichlis. Taxon 65(6): 1263–1287. https://doi.org/10.12705/656.4
  • Peterson PM, Wiersema JH, Soreng RJ, Romaschenko K, Herrera Arrieta Y (2022) (2881) Proposal to conserve the name Triraphis (Poaceae: Chloridoideae: Triraphideae) with a conserved type. Taxon 71(2): 474−475. https://doi.org/10.1002/tax.12701
  • Romaschenko K, Peterson PM, Soreng RJ, Garcia-Jacas N, Futorna O, Susanna A (2012) Systematics and evolution of the needle grasses (Poaceae: Pooideae: Stipeae) based on analysis of multiple chloroplast loci, ITS, and lemma micromorphology. Taxon 61(1): 18–44. https://doi.org/10.1002/tax.611002
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Filgueiras TS, Davis JI, Morrone O (2015) A worldwide phylogenetic classification of the Poaceae (Gramineae). Journal of Systematics and Evolution 53(2): 117–137. https://doi.org/10.1111/jse.12150
  • Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, Barberá P, Gillespie LJ, Zuloaga FO (2017) A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and Evolution 55(4): 259–290. https://doi.org/10.1111/jse.12262
  • Soreng RJ, Peterson PM, Zuloaga FO, Romaschenko K, Clark LG, Teisher JK, Gillespie LJ, Barberá P, Welker CAD, Kellogg EA, Li DZ, Davidse G (2022) A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update. Journal of Systematics and Evolution 60: jse.12847. https://doi.org/10.1111/jse.12847
  • Stapf O (1917) Order CLVII. Gramineae. In: Prain D (Ed.) Flora of Tropical Africa, vol. 9, part 1. L. Reeve and Co. Limited, London, 1–384.
  • Swofford DL (2000) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 5. Sinauer Associates Inc., Sunderland, Massachuesetts.
  • Watson L, Dallwitz M (1992) The Grass Genera of the World. CAB International, Wallingford.
  • Watson L, Macfarlane TD, Dallwitz MJ (1992 onwards) The grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. Version: 5 Nov 2021. https://www.delta-intkey.com/grass/index.htm#H
  • Zwickl DJ (2006) Genetic Algorithm Approaches for the Phylogenetic Analysis of Large Biological Sequence Datasets Under the Maximum Likelihood Criterion. University of Texas, Austin, 125 pp.
login to comment