Data Paper
Data Paper
Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains)
expand article infoAntonio Jesús Pérez-Luque, Regino Zamora, Francisco Javier Bonet, Ramón Pérez-Pérez
‡ Universidad de Granada, Granada, Spain
Open Access


In this data paper, we describe the dataset of the Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains (MIGRAME) project, which aims to assess the capacity of altitudinal migration and colonization of marginal habitats by Quercus pyrenaica Willd. forests in Sierra Nevada (southern Spain) considering two global-change drivers: temperature increase and land-use changes. The dataset includes information of the forest structure (diameter size, tree height, and abundance) of the Quercus pyrenaica ecosystem in Sierra Nevada obtained from 199 transects sampled at the treeline ecotone, mature forest, and marginal habitats (abandoned cropland and pine plantations). A total of 3839 occurrence records were collected and 5751 measurements recorded. The dataset is included in the Sierra Nevada Global-Change Observatory (OBSNEV), a long-term research project designed to compile socio-ecological information on the major ecosystem types in order to identify the impacts of global change in this mountain range.


Quercus pyrenaica forests, altitudinal migration, colonization of abandoned croplands, global change, Sierra Nevada (Spain), occurrence data, measurement data

Project details

Project title

Global Change, altitudinal range shift and colonization of degraded habitats in Mediterranean mountains (MIGRAME)


Regino Jesús Zamora Rodríguez (Principal Investigator, University of Granada)


The project MIGRAME (RNM-6734) was funded by the Excellence Research Group Programme of the Andalusian Government (Spain).


Currently, there is strong scientific evidence of the effects of global change on natural systems (Parmesan 2006, Rosenzweig et al. 2008, García et al. 2014, O’Connor et al. 2015). Some ecological processes are being altered due to the changing climate, such as species distribution (Thuiller et al. 2005, Lenoir et al. 2008), phenology (Parmesan and Yohe 2003, Gordo and Sanz 2010, Wolkovich et al. 2014), ecological interactions (Hughes 2000, Suttle et al. 2007); among others. Land-use changes and climate change are the most important drivers of biodiversity shifts (Sala et al. 2000).

One of the most obvious biotic responses from global warming are the latitudinal and altitudinal shifts of species and communities (Allen and Breshears 1998, Jump and Peñuelas 2005, Lenoir et al. 2008). Species tend to expand into new areas that are becoming favourable, and retract from those that turn hostile. In consideration of two main drivers of global change (climatic warming and land abandonment), an understanding of the dynamics of altitudinal migration and colonization of marginal habitats is critical in order to develop effective forest-management strategies.

The project Global Change, altitudinal range shift, and colonization of degraded habitats in Mediterranean mountains (MIGRAME) was designed to assess the capacity of altitudinal migration and colonization of marginal habitats by a Mediterranean forest ecosystem (Zamora et al. 2013, Benito et al. 2013). This assessment considers two global change drivers: temperature increase and land-use changes. In so doing, this project analyzes the pattern of altitudinal migration and colonization of marginal habitats by a vulnerable ecosystem in a Mediterranean mountain region, which represents the rear edge of their distribution: forests of Quercus pyrenaica Willd.

The Mediterranean region has shown broad climate shifts in the past (Luterbacher et al. 2006) and is potentially vulnerable to forthcoming climatic changes (Pacifici et al. 2015), being considered a key region in future climate-change projections (Giorgi 2006, Giorgi and Lionello 2008). Concomitantly, land-use changes are considered a major driver of vegetation change (McGill 2015). This is especially relevant in Mediterranean region, which has undergone intense antrophic activities for millennia (Padilla et al. 2010) shaping the current landscape (Valbuena-Carabaña et al. 2010).

In this context, Mediterranean ecosystems are considered natural laboratories in which to study global change, due to their high sensitivity to global-change drivers (Matesanz and Valladares 2014, Doblas-Miranda et al. 2015).

Study area descriptions/descriptor

The target ecosystem of the project encompasses the Pyrenean oak forests (Quercus pyrenaica Willd.) of Sierra Nevada.

Sierra Nevada is a high-mountain range located in southern Spain (37°N, 3°W) with altitudes of between 860 m and 3482 m a.s.l. The climate is Mediterranean, characterized by cold winters and hot summers, with pronounced summer drought (July-August). The Sierra Nevada mountain range hosts a high number of endemic plant species (c. 80) (Lorite et al. 2007) for a total of 2,100 species of vascular plants (25% and 20% of Spanish and European flora, respectively), and thus it is considered one of the most important biodiversity hotspots in the Mediterranean region (Blanca et al. 1998). This mountain area has 27 habitat types (listed in the European Union Habitat Directive) harbouring 31 animal species (20 birds, 5 mammals, 4 invertebrates, 2 amphibians and reptiles) and 20 plant species listed in the Annex I and II of EU Habitat and Bird Directives. Sierra Nevada has several types of legal protection: Biosphere Reserve MAB Committee UNESCO; Special Protection Area and Site of Community Importance (Natura 2000 network); and National Park. There are 61 municipalities with more than 90,000 inhabitants. The main economic activities are agriculture, tourism, beekeeping, mining, and skiing (Bonet et al. 2010).

For a description of the Pyrenean oak forests in Sierra Nevada, see Study extent description section.

Design description

The specific aims of the MIGRAME project are:

  • To analyse the relevance of altitudinal migration at the leading edge (high elevation) of the range distribution of Pyrenean oak formation.

  • To analyse the importance of the recolonization process of marginal habitats (abandoned croplands and pine plantations) close to Pyrenean oak formation.

Derived from the two global-change drivers, we have considered two main hypothesis (Figure 1):

Altitudinal migration hypothesis

Several studies have pointed out a trend towards higher temperatures and lower precipitation for the Mediterranean area (Giorgi and Lionello 2008, García-Ruiz et al. 2011). Climate projections forecast an increase of +4.8 °C at the end of the 21st century (Benito et al. 2011) for Sierra Nevada. In this context, shifts in the altitudinal (and latitudinal) distribution of species and communities are expected (Thuiller et al. 2008, Gottfried et al. 2012).

We hypothesised that the range shift of Q. pyrenaica in Sierra Nevada is changing as a consequence of recent changes to temperature, and we would expect an upward expansion (Figure 1a).

Marginal habitat colonization hypothesis

In Mediterranean area, cropland abandonment has been widespread during the second half of the last century (Valbuena-Carabaña et al. 2010, Pías et al. 2014). Land-use change models predict an increase in this trend in the future (Rounsevell et al. 2006). In fact, land abandonment is considered one of the most powerful global-change drivers in developed countries (Escribano-Avila et al. 2012).

We hypothesised that the land-use changes in high mountain (e.g. abandonment of croplands, management of pine plantations) should facilitate the native forest regeneration, and a process of colonization of marginal habitat (abandoned cropland, pine plantations) will occur (Figure 1b).

Figure 1. 

Schematic representation of the two main hypothesis of the project: altitudinal migration (a) and colonization of marginal areas (b) of Q. pyrenaica forests.

Overall, focusing on changes will occur in altitudinal migration and/or colonization of marginal habitats, we examine the following questions: Are altitudinal changes in Pyrenean oak forests associated with recent climate changes? Are they more consistent with changes in land use, or are they consistent with both global-change drivers?

Data published through GBIF

Taxonomic coverage

This dataset includes records of the phylum Magnoliophyta (3823 records, 99.58%) and marginally Pinophyta (16 records, below 1% of total records). Most of the records included in this dataset belong to the class Magnoliopsida (99.58%). There are 5 orders represented in the dataset, with Fagales (98.98%) being the most important order. The other 4 orders (Rosales, Cupressales, Sapindales and Pinales) represent only 1.02% of the records. In this collection, 5 families are represented: Fagaceae, Rosaceae, Cupressaceae, Pinaceae, and Sapindaceae. The most represented taxa are Quercus pyrenaica Willd. and Quercus ilex L. (81.74 and 17.24%, respectively). Of the six taxa included on the dataset, three are considered threatened (Table 1).

Table 1.

Conservation status and threats of the species included in the dataset.

Scientific Name Andalusian Red List1 IUCN2 Threat3
Acer opalus subsp. granatense (Boiss.) Font Quer & Rothm. NT VU 1,2,3
Quercus pyrenaica Willd. NT LR-cd 1,2,4,5,6
Sorbus aria Wimm. NT VU 1,2,3,7

Taxonomic ranks

Kingdom: Plantae

Phylum: Magnoliophyta, Pinophyta

Class: Magnoliopsida (Dicotyledones), Pinopsida

Order: Fagales, Pinales, Cupressales, Sapindales, Rosales

Family: Fagaceae, Pinaceae, Cupressaceae, Sapindaceae, Rosaceae

Genus: Quercus, Pinus, Juniperus, Acer, Sorbus

Species: Quercus pyrenaica, Pinus sylvestris, Juniperus communis, Acer opalus subsp. granatense, Sorbus aria, Quercus ilex

Spatial coverage

General spatial coverage

Quercus pyrenaica forests

The Pyrenean oak (Quercus pyrenaica Willd.) forests extend through south-western France and the Iberian Peninsula (Franco 1990) (Figure 2a) reaching its southern limit in north of Morocco. In the Iberian Peninsula these forests live under meso-supramediterranean and mesotemperate areas and subhumid, humid and hyperhumid ombroclimate (Rivas-Martínez et al. 2002) living on siliceous soils, or soils poor in basic ions (Vilches de la Serna 2014). Q. pyrenaica requires between 650 and 1200 mm of annual precipitation and a summer minimal precipitation between 100 and 200 mm (Martínez-Parras and Molero-Mesa 1982, García and Jiménez 2009), summer rainfall being a key factor in the distribution of the species (Gavilán et al. 2007, Río et al. 2007).

Figure 2. 

Distribution of Quercus pyrenaica forests in Iberian Peninsula (a). Sierra Nevada harbours eight populations of Q. pyrenaica clustered into three groups (different colours). We selected two study sites: Robledal de Cañar (c) and Robledal San Juan (d). Colour Orthophotography of 2009 from Regional Ministry of the Environment, Regional Government of Andalusia.

The forests dominated by Q. pyrenaica constitute an ecosystem included in the Annex I of the Habitat Directive (habitat code 9230: Quercus pyrenaica oak woods and Quercus robur and Quercus pyrenaica oak woods from Iberian northwestern). The conservation status of this habitat is not well known (EIONET 2014), partly due to lack of detailed ecological studies (García and Jiménez 2009).

This species reaches its southernmost European limit at Sierra Nevada mountains, where eight oak patches (2400 Has) have been identified (Figure 2b), ranging between 1100 and 2000 m a.s.l. and generally associated to major river valleys. Sierra Nevada is considered a glacial refugia for deciduous Quercus species during glaciation (Brewer et al. 2002, Olalde et al. 2002, Rodríguez-Sánchez et al. 2010) and these populations are considered as a rear edge of the habitat distribution, which is important in determining habitat responses to expected climate change (Hampe and Petit 2005).

These forests, like other vegetation types, have undergone intense human pressure (wood cutting, grazing, etc.) which has reduced their distribution area and in some cases has altered their floristic pattern (Gavilán et al. 2000, Gavilán et al. 2007).

Q. pyrenaica is considered as vulnerable in southern Spain (Vivero et al. 2000). The populations of Pyrenean oak forests at Sierra Nevada are considered relict forests (Melendo and Valle 2000, Vivero et al. 2000), undergoing intensive anthropic use in the last few decades (Camacho-Olmedo et al. 2002, Valbuena-Carabaña et al. 2010). The relict presence of this species in Sierra Nevada is related both to its genetic resilience as well as to its high intraspecific genetic diversity (Valbuena-Carabaña and Gil 2013). However, they are also expected to suffer the impact of climate change, due to their climate requirements (wet summers). Thus, simulations of the climate change effects on this habitat forecast a reduction in suitable habitats for Sierra Nevada (Benito et al. 2011).


36°56'13.2"N and 37°8'9.6"N Latitude; 3°26'16.8"W and 3°20'16.8"W Longitude

Temporal coverage


Collection name

Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains)

Collection identifier


Study extent description

The MIGRAME dataset covers the Pyrenean oak forests (see Spatial coverage section) in Sierra Nevada mountain range (see Study area descriptions section).

Sampling description

We sampled two localities of the Pyrenean oak forests in Sierra Nevada: Robledal de Cañar and Robledal de San Juan. We selected those two sites based on previous works (Pérez-Luque 2011, Pérez-Luque et al. 2013) that clustered the populations of Q. pyrenaica forests based on their plant species composition and environmental features. The Robledal de Cañar site (Figure 2c) (1366-1935 m a.s.l., 37°57'28.04"N, 3°25'57.1"W; Cáñar, Granada, SE Spain) was located in the Alpujarras Region on the southern slopes of Sierra Nevada. The Robledal de San Juan (Figure 2d) (1189-1899 m a.s.l., 37°7'29.63"N, 3°21'54.60"W; Güejar-Sierra, Granada, SE Spain) site was located in the northern slopes of Sierra Nevada.

The sampling design was determined by the hypothesis of the project (see Project Design description section).

Altitudinal migration design

To test our hypothesis of altitudinal migration, we sampled a total of 104 transects (Table 2) distributed along an altitudinal gradient at the two sites. We sampled two transects (at least 10 m apart) every 25 m of elevation from forest limit to treeline ecotone at both study sites. At each locality, we performed three replicates of this design (Figure 3a).

Figure 3. 

Sampling Design. a Altitudinal migration hypothesis. At each study site, from the forest edge to treeline ecotone, we sampled each 25 m of elevation b Colonization of marginal habitat hypothesis. Transects were located on three habitat types: Forests (brown circles), Forest Edges (red squares) and Inside Marginal Habitats (blue triangles).

Table 2.

Transect number of the Altitudinal migration design.

Locality Altitudinal gradient Transects1
R1 R2 R3
Robledal de Cañar 1900–2150 12 20 20
Robledal de San Juan 1775–2000 18 18 16

Habitat colonization design

To test the hypothesis of colonization of marginal habitats, we laid out transects in two types of marginal habitats: abandoned agricultural areas and pine plantations (Figure 3b). A total of 64 transects were located within the marginal habitat and on the edge between marginal habitat and Pyrenean oak forest. The number of transects inside the marginal habitat was determined by the size of the marginal habitat (Table 3).

Table 3.

Transects number of the Colonization of marginal habitat design.

Locality Marginal habitat Replicate Surface (ha) Inside Edge
Robledal de Cañar Abandoned Cropland R1 3.29 6 3
R2 5.80 9 3
R3 1.55 3 3
Pine plantation 80.70 6 6
Robledal de San Juan Abandoned Cropland R1 3.46 6 3
R2 10.36 13 3

Forest samplings

In addition to the above surveys, we conducted a survey inside Q. pyrenaica forests. A total of 31 transects were distributed at the two sites.

Data collection

We sampled a total of 199 linear transects of 30 m × 10 m (Suppl. material 1). Within each transect, all tree species were recorded and the species identity was recorded. Diameter size and tree height were measured for all individuals. Field data were recorded using handheld PDAs. A customized application (app) (Figure 4) was built to facilitate both data collection and storage (Pérez-Pérez et al. 2013 The data were automatically integrated into an information system using this application.

Figure 4. 

Diagram of integration of the dataset within Information System of Sierra Nevada Global Change Observatory ( Field data were recorded with Smartphone devices (see Pérez-Pérez et al. 2013). After a validation process (see Quality Control section) the occurrence and measurement data were accommodated to Darwin Core Archive and integrated into GBIF.

Method step description

All data were stored in a relational database (PostgreSQL) and added to the Information System of Sierra Nevada Global-Change Observatory (Figure 4) (érez-Pérez et al. 2012; Free access upon registration). Taxonomic and spatial validations were made on this database (see Quality-control description). A custom-made SQL view of the database was performed to gather occurrence data and other variables associated with some occurrence data (diameter size and tree height of each individual).

The occurrence and measurement data were accommodated to fulfil the Darwin Core Standard (Wieczorek et al. 2009, Wieczorek et al. 2012). We used Darwin Core Archive Validator tool ( to check whether the dataset met Darwin Core specifications. The Integrated Publishing Toolkit (IPT v2.0.5) (Robertson et al. 2014) of the Spanish node of the Global Biodiversity Information Facility (GBIF) ( was used both to upload the Darwin Core Archive and to fill out the metadata.

The Darwin Core elements for the occurrence data included in the dataset were: occurrenceId, modified, language, institutionCode, collectionCode, basisOfRecord, catalogNumber, recordedBy, eventDate, day, month, year, continent, country, countryCode, stateProvince, county, locality, minimumElevationInMeters, maximumElevationInMeters, decimalLongitude, decimalLatitude, coordinateUncertaintyinMeters, geodeticDatum, scientificName, kingdom, phylum, class, order, family, genus, specificEpithet, infraspecificEpithet, scientificNameAuthorship.

For the measurement data, the Darwin Core elements included were: occurrenceId, measurementID, measurementType, measurementValue, measurementAccuracy, measurementUnit, measurementDeterminedDate, measurementDeterminedBy, measurementMethod.

Quality control description

Transects coordinates were recorded with a handheld Garmin eTrex Vista Global Positioning System (GPS, ±5 m accuracy, Garmin (2007)) (WGS84 Datum). We also used colour digital orthophotographs provided by the Andalusian Cartography Institute and GIS (ArcGIS 9.2; ESRI, Redlands, California, USA) to verify the geographical coordinates of each sampling plot (Chapman and Wieczorek 2006).

The specimens were taxonomically identified using Flora iberica (Castroviejo 1986–2005). The scientific names were checked with databases of International Plant Names Index (IPNI 2013) and Catalogue of Life/Species 2000 (Roskov et al. 2015). We also used the R package taxize (Chamberlain and Szöcs 2013, Chamberlain et al. 2014) to verify the taxonomical classification.

We also performed validation procedures (Chapman 2005a, 2005b) (geographic coordinate format, coordinates within country/provincial boundaries, absence of ASCII anomalous characters in the dataset) with DARWIN_TEST (v3.2) software (Ortega-Maqueda and Pando 2008).

Dataset description

Object name: Darwin Core Archive Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains)

Character encoding: UTF-8

Format name: Darwin Core Archive format

Format version: 1.0


Publication date of data: 2015-05-13

Language: English

Licenses of use: This “Dataset of MIGRAME Project (Global Change, Altitudinal Range Shift and Colonization of Degraded Habitats in Mediterranean Mountains)” is licensed under a made available under the Creative Commons Attribution Non Commercial (CC-BY-NC) 4.0 License

Metadata language: English

Date of metadata creation: 2015-05-13

Hierarchy level: DataSet


Funding was provided by the project MIGRAME (RNM 6734) from the Excellence Research Group Programme of the Andalusian Government. This research work was conducted in the collaborative framework of the “Sierra Nevada Global Change Observatory (LTER platform)” Project from the Environment Department of Andalusian Regional Government, the Sierra Nevada National Park and the Spanish Biodiversity Foundation (“Fundación Biodiversidad”). We thank Katia Cezón and Franciso Pando (Spanish GBIF node–CSIC) for technical support. We also thank David Nesbitt for linguistic advice. A. J. Pérez-Luque would like to thank the MICINN of the Government of Spain for the financial support (PTA 2011-6322-I).


  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Sciences 95: 14839–14842. doi: 10.1073/pnas.95.25.14839
  • Benito B, Lorite J, Peñas J (2011) Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. Climatic Change 108: 471–483. doi: 10.1007/s10584-010-0015-3
  • Benito B, Pérez-Pérez R, Zamora R, Pérez-Luque AJ (2013) Colonización de hábitats marginales y migración altitudinal del roble mediada por el arrendajo: Simulación dinámica mediante sistemas multi-agente. In: XI Congreso Nacional de la Asociación Española de Ecología Terrestre. Invitación a la ecología. Pamplona, Spain. doi: 10.7818/AEET.XICongress.2013
  • Blanca G, Cueto M, Martínez-Lirola M, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biological Conservation 85: 269–285. doi: 10.1016/S0006-3207(97)00169-9
  • Blanca G, López Onieva M, Lorite J, Martínez Lirola MJ, Molero Mesa J, Quintas S, Ruíz Girela M, Varo MA, Vidal S (2001) Flora amenazada y endémica de Sierra Nevada. Editorial Universidad de Granada, Granada, 410 pp.
  • Brewer S, Cheddadi R, Beaulieu J de, Reille M (2002) The spread of deciduous Quercus throughout Europe since the last glacial period. Forest Ecology and Management 156: 27–48. doi: 10.1016/S0378-1127(01)00646-6
  • Cabezudo B, Talavera S, Blanca G, Salazar C, Cueto M, Valdés B, Hernández-Bermejo J, Herrera C, Rodríguez-Hiraldo C, Navas D (2005) Lista roja de la flora vascular de Andalucía. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla, 1–126.
  • Camacho-Olmedo M, García-Martínez P, Jiménez-Olivencia Y, Menor-Toribio J, Paniza-Cabrera A (2002) Dinámica evolutiva del paisaje vegetal de la Alta Alpujarra granadina en la segunda mitad del s. XX. Cuadernos Geográficos 32: 25–42.
  • Castroviejo S (Ed.) (1986–2005) Flora iberica. Real Jardín Botánico CSIC, Madrid.
  • Chamberlain S, Szöcs E, Boettiger C, Ram K, Bartomeus I, Baumgartner J (2014) taxize: Taxonomic information from around the web. R package version 0.3.0.
  • Chapman AD (2005a) Principles and methods of Data Cleaning: Primary species and species-occurrence data, version 1.0. Global Biodiversity Information Facility, Copenhagen, 75 pp.
  • Doblas-Miranda E, Martínez-Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Curiel Yuste J, Díaz M, Ferrandis P, García-Hurtado E, Iriondo JM, Keenan TF, Latron J, Llusia J, Loepfe L, Mayol M, Moré G, Moya D, Peñuelas J, Pons X, Poyatos R, Sardans J, Sus O, Vallejo VR, Vayreda J, Retana J (2015) Reassessing global change research priorities in Mediterranean terrestrial ecosystems: How far have we come and where do we go from here? Global Ecology and Biogeography 24: 25–43. doi: 10.1111/geb.12224
  • Escribano-Avila G, Sanz-Pérez V, Pías B, Virgós E, Escudero A, Valladares F (2012) Colonization of abandoned land by Juniperus thurifera is mediated by the interaction of a diverse dispersal assemblage and environmental heterogeneity. PLoS ONE 7: e46993. doi: 10.1371/journal.pone.0046993
  • Franco J (1990) Quercus L. In: Castroviejo A, Laínz M, López-González G, Montserrat P, Muñoz-Garmendia F, Paiva J, Villar L (Eds) Flora iberica 2. Real Jardín Botánico CSIC, Madrid, 15–36.
  • García I, Jiménez P (2009) 9230 Robledales de Quercus pyrenaica y robledales de Quercus robur y Quercus pyrenaica del noroeste ibérico. In: Ministerio de Medio Ambiente, y Medio Rural y Marino (Ed.) Bases Ecológicas Preliminares para la Conservación de los Tipos de Hábitat de Interés Comunitario En España, Ministerio de Medio Ambiente, y Medio Rural y Marino, Madrid, 1–66.
  • García RA, Cabeza M, Rahbek C, Araújo MB (2014) Multiple dimensions of climate change and their implications for biodiversity. Science 344. doi: 10.1126/science.1247579
  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta–Martínez T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth-Science Reviews 105: 121–139. doi: 10.1016/j.earscirev.2011.01.006
  • Gavilán R, Sánchez-Mata D, Vilchez B (2000) Effects of disturbance on floristic patterns of Quercus pyrenaica forests in central Spain. In: White P, Mucina L, Leps J (Eds) Vegetation science in retrospect and perspective – Proceedings 41st IAVS symposium. Opulus Press, Uppsala, 227–230.
  • Gavilán R, Sánchez-Mata D, Vilchez B (2007) Modeling current distribution of spanish Quercus pyrenaica forests using climatic parameters. Phytocoenologia 37: 561–581. doi: 10.1127/0340-269X/2007/0037-0561
  • Giorgi F (2006) Climate change hot-spots. Geophysical Research Letters 33: L08707. doi: 10.1029/2006GL025734
  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global and Planetary Change 63: 90–104. doi: 10.1016/j.gloplacha.2007.09.005
  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology 16: 1082–1106. doi: 10.1111/j.1365-2486.2009.02084.x
  • Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barancok P, Benito Alonso JL, Coldea G, Dick J, Erschbamer B, Fernández Calzado MR, Kazakis G, Krajci J, Larsson P, Mallaun M, Michelsen O, Moiseev D, Moiseev P, Molau U, Merzouki A, Nagy L, Nakhutsrishvili G, Pedersen B, Pelino G, Puscas M, Rossi G, Stanisci A, Theurillat J-P, Tomaselli M, Villar L, Vittoz P, Vogiatzakis I, Grabherr G (2012) Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2: 111–115. doi: 10.1038/nclimate1329
  • Gómez-Aparicio L, Pérez-Ramos IM, Mendoza I, Matías L, Quero JL, Castro J, Zamora R, Marañón T (2008) Oak seedling survival and growth along resource gradients in Mediterranean forests: Implications for regeneration in current and future environmental scenarios. Oikos 117: 1683–1699. doi: 10.1111/j.1600-0706.2008.16814.x
  • Gómez-Aparicio L, Zamora R, Gómez JM (2005) The regeneration status of the endangered Acer opalus subsp. granatense throughout its geographical distribution in the Iberian Peninsula. Biological Conservation 121: 195–206. doi: 10.1016/j.biocon.2004.04.019
  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: The rear edge matters. Ecology Letters 8: 461–467. doi: 10.1111/j.1461-0248.2005.00739.x
  • Herrera C, Manzaneda A, Benavente A, Luque P, Jordano P (2000) Sorbus aria (L.) Crantz. In: Blanca G, Cabezudo B, Hernández-Bermejo J, Herrera C, Muñoz J, Valdés B (Eds) Libro rojo de la flora silvestre amenzada de Andalucía. II. Especies vulnerables. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla, 337–339.
  • Hughes L (2000) Biological consequences of global warming: Is the signal already apparent? Trends in Ecology & Evolution 15: 56–61. doi: 10.1016/S0169-5347(99)01764-4
  • IUCN (2001) IUCN Red List Categories. Prepared by the IUCN Species Survival Commission. As approved by the 51st Meeting of the IUCN Council Gland, Switzerland. IUCN, Gland, Switzerland.
  • Jump AS, Peñuelas J (2005) Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters 8: 1010–1020. doi: 10.1111/j.1461-0248.2005.00796.x
  • Lenoir J, Gégout JC, Marquet PA, Ruffray P de, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century 320: 1768–1771. doi: 10.1126/science.1156831
  • Lorite J, Navarro FB, Valle F (2007) Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosystems 141: 1–14. doi: 10.1080/11263500601153560
  • Luterbacher J, Xoplaki E, Casty C, Wanner H, Pauling A, Küttel M, Rutishauser T, Brönnimann S, Fischer E, Fleitmann D, Gonzalez-Rouco FJ, García-Herrera R, Barriendos M, Rodrigo F, Gonzalez-Hidalgo JC, Saz MA, Gimeno L, Ribera P, Brunet M, Paeth H, Rimbu N, Felis T, Jacobeit J, Dünkeloh A, Zorita E, Guiot J, Türkes M, Alcoforado MJ, Trigo R, Wheeler D, Tett S, Mann ME, Touchan R, Shindell DT, Silenzi S, Montagna P, Camuffo D, Mariotti A, Nanni T, Brunetti M, Maugeri M, Zerefos C, Zolt SD, Lionello P, Nunes MF, Rath V, Beltrami H, Garnier E, Ladurie ELR (2006) Mediterranean climate variability over the last centuries: A review. In: P. Lionello PM-R, Boscolo R (Eds) Mediterranean climate variability. Elsevier, 27–148.
  • Marañón T, Zamora R, Villar R, Zavala M, Quero J, Pérez-Ramos I, Mendoza I, Castro J (2004) Regeneration of tree species and restoration under constrasted Mediterranean habitats: Field and glasshouse experiments. International Journal of Ecology and Environmental Sciences 30: 187–196.
  • Martínez-Parras J, Molero-Mesa J (1982) Ecología y fitosociología de Quercus pyrenaica Willd. en la provincia Bética. Los melojares béticos y sus etapas de sustitución. Lazaroa 4: 91–104.
  • Matesanz S, Valladares F (2014) Ecological and evolutionary responses of Mediterranean plants to global change. Environmental and Experimental Botany 103: 53–67. doi: 10.1016/j.envexpbot.2013.09.004
  • McGill B (2015) Biodiversity: Land use matters. Nature 520: 38–39. doi: 10.1038/520038a
  • Melendo M, Valle F (2000) Estudio comparativo de los melojares nevadenses. In: Chacón J, Rosúa J (Eds) 1ª Conferencia internacional Sierra Nevada. Universidad de Granada, Granada, 463–479.
  • Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. Forest Ecology and Management 156: 89–102. doi: 10.1016/S0378-1127(01)00636-3
  • Ortega-Maqueda I, Pando F (2008) DARWIN_TEST v3.2: Una aplicación para la validación y el chequeo de los datos en formato Darwin Core 1.2 or Darwin Core 1.4. Unidad de Coordinación de GBIF, CSIC. Ministerio de Educación y Ciencia, Madrid, Spain. [accessed 12.12.2014]
  • O’Connor MI, Holding JM, Kappel CV, Duarte CM, Brander K, Brown CJ, Bruno JF, Buckley L, Burrows MT, Halpern BS, Kiessling W, Moore P, Pandolfi JM, Parmesan C, Poloczanska ES, Schoeman DS, Sydeman WJ, Richardson AJ (2015) Strengthening confidence in climate change impact science. Global Ecology and Biogeography 24: 64–76. doi: 10.1111/geb.12218
  • Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, Scheffers BR, Hole DG, Martin TG, Akçakaya HR, Corlett RT, Huntley B, Bickford D, Carr JA, Hoffmann AA, Midgley GF, Pearce-Kelly P, Pearson RG, Williams SE, Willis SG, Young B, Rondinini C (2015) Assessing species vulnerability to climate change. Nature Climate change 5(3): 215–224. doi: 10.1038/nclimate2448
  • Padilla FM, Vidal B, Sánchez J, Pugnaire FI (2010) Land-use changes and carbon sequestration through the twentieth century in a Mediterranean mountain ecosystem: Implications for land management. Journal of Environmental Management 91: 2688–2695. doi: 10.1016/j.jenvman.2010.07.031
  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems 421: 37–42. doi: 10.1038/nature01286
  • Pérez-Luque AJ (2011) Análisis multivariante ambiental de los melojares de Quercus pyrenaica Willd. de Sierra Nevada. Master’s thesis. University of Granada, Granada, 63 pp.
  • Pérez-Luque AJ, Bonet FJ, Benito B, Zamora R (2013) Caracterización ambiental de los robledales de Quercus pyrenaica Willd. de Sierra Nevada. In: XI Congreso Nacional de la Asociación Española de Ecología Terrestre. Invitación a la ecología. Pamplona, Spain. doi: 10.7818/AEET.XICongress.2013
  • Pérez-Pérez R, Bonet FJ, Pérez-Luque AJ, Zamora R (2012) Linaria: a set of information management tools to aid environmental decision making in Sierra Nevada (Spain) LTER site. In: Long Term Ecological Research (LTER) (Ed.) Proceedings of the 2013 LTER All Scientist Meeting: The Unique Role of the LTER Network in the Antropocene: Collaborative Science Across Scales. LTER, Estes Park - Colorado, USA.
  • Pérez-Pérez R, Pérez-Luque AJ, Navarro I, Bonet FJ, Zamora R (2013) Seguimiento y divulgación de procesos ecológicos mediante dispositivos móviles: Un caso práctico. In: XI Congreso Nacional de la Asociación Española de Ecología Terrestre. Invitación a la ecología. Pamplona, Spain. doi: 10.7818/AEET.XICongress.2013
  • Pías B, Escribano-Avila G, Virgós E, Sanz-Pérez V, Escudero A, Valladares F (2014) The colonization of abandoned land by spanish juniper: Linking biotic and abiotic factors at different spatial scales. Forest Ecology and Management 329: 186–194. doi: 10.1016/j.foreco.2014.06.021
  • Prados J, Vivero J, Hernández-Bermejo J (2000) Acer opalus Mill. subsp. granatense (Boiss.) Font Quer & Rothm. In: Blanca G, Cabezudo B, Hernández-Bermejo J, Herrera C, Muñoz J, Valdés B (Eds) Libro rojo de la flora silvestre amenzada de Andalucía. II. Especies vulnerables. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla, 21–23.
  • Rivas-Martínez S, Díaz T, Fernández-González F, Izco J, Loidi J, Lousa M, Penas A (2002) Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itinera Geobotanica 15: 5–922.
  • Río S del, Herrero L, Penas A (2007) Bioclimatic analysis of the Quercus pyrenaica forests in Spain. Phytocoenologia 37: 541–560. doi: 10.1127/0340-269X/2007/0037-0541
  • Robertson T, Doring M, Guralnick R, Bloom D, Wieczorek J, Braak K, Otegui J, Russell L, Desmet P (2014) The GBIF Integrated Publishing Toolkit: Facilitating the efficient publishing of biodiversity data on the internet. PLoS ONE 9: e102623. doi: 10.1371/journal.pone.0102623
  • Rodríguez-Sánchez F, Hampe A, Jordano P, Arroyo J (2010) Past tree range dynamics in the Iberian Peninsula inferred through phylogeography and palaeodistribution modelling: A review. Review of Palaeobotany and Palynology 162: 507–521. doi: 10.1016/j.revpalbo.2010.03.008
  • Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root T, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453: 353–357. doi: 10.1038/nature06937
  • Roskov Y, Abucay L, Orrell T, Nicolson D, Kunze T, Culham A, Bailly N, Kirk P, Bourgoin T, DeWalt R, Decock W, De Wever A (Eds) (2015) Species 2000 & ITIS Catalogue of Life. Species 2000: Naturalis, Leiden, the Netherlands. [accessed 05.02.2015]
  • Rounsevell M, Reginster I, Araújo M, Carter T, Dendoncker N, Ewert F, House J, Kankaanpää S, Leemans R, Metzger M, Schmit C, Smith P, Tuck G (2006) A coherent set of future land use change scenarios for Europe. Agriculture, Ecosystems & Environment 114: 57–68. doi: 10.1016/j.agee.2005.11.027
  • Sala OE, Stuart Chapin F, III, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287: 1770–1774. doi: 10.1126/science.287.5459.1770
  • Suttle KB, Thomsen MA, Power ME (2007) Species interactions reverse grassland responses to changing climate. Science 315: 640–642. doi: 10.1126/science.1136401
  • Thuiller W, Albert C, Araújo MB, Berry PM, Cabeza M, Guisan A, Hickler T, Midgley GF, Paterson J, Schurr FM, Sykes MT, Zimmermann NE (2008) Predicting global change impacts on plant species’ distributions: Future challenges. Perspectives in Plant Ecology, Evolution and Systematics 9: 137–152. doi: 10.1016/j.ppees.2007.09.004
  • Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences 102: 8245–8250. doi: 10.1073/pnas.0409902102
  • Valbuena-Carabaña M, Heredia UL de, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the spanish forests: A socio-economic process. Review of Palaeobotany and Palynology 162: 492–506. doi: 10.1016/j.revpalbo.2009.11.003
  • Valbuena-Carabaña M, Gil L (2013) Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary. Tree Genetics & Genomes 9: 1129–1142. doi: 10.1007/s11295-013-0614-z
  • Vilches de la Serna B (2014) Comprehensive study of Quercus pyrenaica Willd. forests at Iberian Peninsula: Indicator species, bioclimatic, and syntaxonomical characteristics. PhD thesis. Complutense University of Madrid, 194 pp.
  • Vivero J, Prados J, Hernández-Bermejo J (2000) Quercus pyrenaica Willd. In: Blanca G, Cabezudo B, Hernández-Bermejo J, Herrera C, Muñoz J, Valdés B (Eds) Libro rojo de la flora silvestre amenzada de Andalucía. II. Especies vulnerables. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla, 303–306.
  • Wieczorek J, Döring M, De Giovanni R, Robertson T, Vieglais D (2009) Darwin core terms: A quick reference guide. [accessed 12.12.2014]
  • Wieczorek J, Bloom D, Guralnick R, Blum S, Doring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin core: An evolving community-developed biodiversity data standard. PLoS ONE 7: e29715. doi: 10.1371/journal.pone.0029715
  • Wolkovich EM, Cook BI, Davies TJ (2014) Progress towards an interdisciplinary science of plant phenology: Building predictions across space, time and species diversity. New Phytologist 201: 1156–1162. doi: 10.1111/nph.12599
  • Zamora R, Pérez-Luque AJ, Benito B, Bonet FJ, Navarro I, Pérez-Pérez R, Hódar J, Matías L (2013) Cambio global, migración altitudinal y colonización de hábitats degradados en montañas mediterráneas (MIGRAME). In: XI Congreso Nacional de la Asociación Española de Ecología Terrestre. Invitación a la ecología. Pamplona, Spain. doi: 10.7818/AEET.XICongress.2013

Supplementary material

Supplementary material 1 

Table S1

Antonio Jesús Pérez-Luque, Regino Zamora, Francisco Javier Bonet, Ramón Pérez-Pérez

Data type: Table

Explanation note: Information about transects of the project. Elevation in m a.s.l. Type: AM = Altitudinal migration; FO = Forest; MH = Marginal Habitat. Subtype: AC-e: Abandoned Cropland: edge; AC-i: Abandoned Cropland: inside; Pp-e: Pine plantations: edge; Pp-i: Pine plantations: inside; TE: Treeline Ecotone. Locality: CA = Robledal de Cáñar; SJ = Robledal de San Juan.

This dataset is made available under the Open Database License ( The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.
Download file (57.92 kb)