Research Article
Print
Research Article
Synotis jinpingensis (Asteraceae, Senecioneae), a new species with white ray florets from southeastern Yunnan, China
expand article infoLiao-Chen Zhao, Ren Chen§, Zhi-Yong Yu|, Ming Tang, Qin-Er Yang§
‡ Jiangxi Agricultural University, Nanchang, China
§ South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| Administrative Bureau of Fenshuiling National Nature Reserve, Jinping, China
Open Access

Abstract

Synotis jinpingensis (Asteraceae, Senecioneae), a new species from Jinping county in southeastern Yunnan province, China, is described and illustrated. This species is distinguished by having white ray florets in the genus Synotis, in which only species with yellow ray florets have been hitherto known. In habit and leaf shape S. jinpingensis is most closely similar to S. duclouxii, a species occurring in southwestern Guizhou, southern Sichuan and northeastern Yunnan, China, but differs, in addition to the color of ray florets, by having fewer lateral veins of leaves, obviously longer bracts of calyculus, and larger phyllaries. The membership of the new species within Synotis is strongly corroborated by evidence from floral micromorphology and phylogenetic analyses based on ITS sequence data. Color photographs of living plants, a distribution map, and provisional IUCN status of S. jinpingensis are provided.

Key words

Compositae, floral micromorphology, ITS sequence data, taxonomy

Introduction

Synotis (Clarke) C. Jeffrey & Y.L. Chen (Asteraceae, Senecioneae), was segregated from Senecio L. based on its sub-shrubby habit and anther bases with sterile tailed auricles. Synotis is endemic to the Sino-Himalayan region, except for two species occurring in northwestern China and Kyrgyzstan (Jeffrey and Chen 1984; Li et al. 2018). Sixty species are currently recognized in the genus, with 48 recorded in China (Jeffrey and Chen 1984; Chen 1999; Chen et al. 2011; Tang et al. 2013a, b, c, 2014, 2017, 2022; Tong et al. 2017; Li et al. 2020; Liu et al. 2020, 2021; Tang and Chen 2021; Zhang et al. 2021; Fan et al. 2022a, b).

During a botanical trip in March 2022 to southeastern Yunnan, China, we discovered an unusual population of Synotis with white ray florets (Fig. 1) in the Fenshuiling National Nature Reserve in Jinping county (Fig. 2). All the previously known species in Synotis have yellow ray florets. The habit and the obovate-lanceolate or elliptic leaves of the plants are most closely similar to those of S. duclouxii, a species occurring in southwestern Guizhou, southern Sichuan, and northeastern Yunnan, China (Liu et al. 2020) (Fig. 2), but differ by having white florets and several other morphological characters, including fewer nerves on the leaves and longer bracts of calyculus. We conducted floral micromorphological studies and performed phylogenetic analyses based on ITS sequence data to further confirm the membership of the new species within the genus Synotis. We therefore determine that the population in question represents a hitherto undescribed species, which we describe below.

Figure 1. 

Synotis jinpingensis in the wild (Jinping, Yunnan, China) A habitat B habit C portion of stem D leaves (left three: adaxial side; right three: abaxial side) E synflorescence F capitulum (side view) G capitulum (top view) H florets (left: ray floret; right: disk floret) I phyllaries (left: adaxial side; right: abaxial side) J bracts of calyculus.

Figure 2. 

Distribution map of Synotis jinpingensis (black dot) and S. duclouxii (black star).

Material and methods

Gross morphology

We conducted careful observations of living plants in a population of the new species in Jinping county in southeastern Yunnan, China. All the major morphological characters, including the habit, the shape and size of leaves, involucres, ray and disk florets, and the type of synflorescence, which were observed and photographed On living plants by digital camera (OLYMPUS TG-6, Tokyo).

Floral micromorphology

For the study of three floral micromorphological characters of the new species (voucher: Z. Y. Yu et al. JXAU 01, JXAU), including papillae on style arms, filament collar, and anther endothecial cell thickenings in stamens [(for all these three micromorphological characters were considered taxonomic significance in the Synotis reported by Jeffrey and Chen (1984) and Tang (2014)], we followed the method of Tang et al. (2014), and all these characters were observed and photographed under microscope (ZEISS AXIO IMAGER A2M, Germany).

Phylogenetic analyses

Based on the results of previous phylogenetic analyses of the tribe Senecioneae (Pelser et al. 2002, 2003, 2007, 2010), we selected 82 samples representing 79 species in 38 genera within Senecioneae for our analyses. These included 30 species of Senecio and 13 species in Synotis. Abrotanella emarginata Cass. (subtribe Abrotanellinae) was selected as a root, according to the results of Pelser et al. (2007, 2010). We generated new sequences for our new species and its putative close ally S. duclouxii, and another species S. cavaleriei (H. Lév.) C. Jeffrey & Y.L. Chen, while the sequences of other species were retrieved from GenBank. Voucher information and GenBank accession numbers for the material used in this study are given in Appendix 1.

Total genomic DNA of Synotis cavaleriei, S. duclouxii and our new species were extracted from silica gel-dried leaves using the modified CTAB method of Doyle and Doyle (1987). The nuclear regions (ITS) were sequenced, with the primer pairs ITS4 and ITS5 (White et al. 1990). Amplification and sequencing reactions followed Tang (2014) and Ren et al. (2017).

All sequences were aligned with MAFFT 7.450 (Katoh and Standley 2013). ModelFinder (Kalyaanamoorthy et al. 2017) was used to select the best-fit model using BIC criterion. Maximum Likelihood (ML) analysis was generated by IQ-TREE 2.1.3 (Nguyen et al. 2015), with 20 000 ultrafast bootstraps, under GTR+F+I+I+R3 model by ModelFinder. Bayesian Inference (BI) (Ronquist et al. 2012) analysis was carried out by MrBayes 3.2.6 (Ronquist et al. 2012), under GTR+F+I+G4 model, with 3 000 000 generations, sampling every 1 000 generations to ensure the convergence (average deviation of split frequencies less than 0.01 and the effective sample sizes over 200), in which the first 25% of sampled data treated were discarded as burn-in and the remaining trees were used to estimate the posterior probabilities (PP). Bootstrap percentage (MLBS) values ≥ 70 (Hillis and Bull 1993) and PP values ≥ 0.95 were regarded as strong support.

Results and discussion

Gross morphology

As shown in Figs 1, 2, our new species has a habit typical of Synotis ser. Synotis (Jeffrey and Chen 1984), with the leaves clustered at the bottom of the synflorescence, indicating that this species should belong to this series. It is readily distinguishable from all other species within the genus by its white ray florets. From its putative closest ally, S. duclouxii, the new species differs additionally by having fewer nerves on the leaves (10–14 vs. 18–20), longer bracts of calyculus (6–8 mm vs. 1–3 mm) and larger phyllaries (8–10 mm long, 2–3 mm broad vs. 5–7 mm long, 1–2 mm broad) [see Liu et al. (2020) for morphological characters of S. duclouxii].

Floral micromorphology

The central tuft of papillae on the style arms of our new species is prominent, much longer than laterals (Fig. 3A). The anther collars are balusterform (Fig. 3B), the anther tails are ca. 1.5 times as long as antheropodia (Fig. 3B), and the endothecial cell wall thickenings are radial (Fig. 3C). All these characters match well those reported previously in Synotis (Jeffrey and Chen 1984; Tang et al. 2013a, b, 2014; Tang 2014; Li et al. 2018) and further confirm the generic affiliation of our new species.

Figure 3. 

Three micromorphological characters of Synotis jinpingensis A papillae on style arms B anther collar and anther tails C anther endothecial cell wall thickenings.

Phylogenetic analyses

Our ML and BI analyses produce almost identical topologies, and they are also consistent with the results of previous studies (Pelser et al. 2007, 2010; Tang et al. 2014; Tong et al. 2017; Li et al. 2018). As shown in the ML tree (Fig. 5), all the sampled species of Synotis form a strongly supported clade (MLBS/PP = 99%/1.00) in subtribe Senecioninae and our new species is deeply nested within this clade. The membership of our new species within Synotis is thus strongly corroborated by ITS sequence data.

Taxonomic treatment

Synotis jinpingensis M.Tang, Z.Y.Yu & Q.E.Yang, sp. nov.

Figs 1, 4

Type

China. Yunnan province: Jinping county, Fenshuiling National Nature Reserve, Guaitang village, in mixed forests, alt. ca. 2400 m, 22°45′36.87″N, 103°28′4.65″E, 30 March 2022, Z.Y. Yu et al. JXAU 01 (holotype: JXAU; isotypes: IBSC, JXAU). Fig. 4.

Figure 4. 

Holotype (A) and isotype (B) sheets of Synotis jinpingensis.

Diagnosis

Synotis jinpingensis is most closely similar to S. duclouxii in habit and leaf shape, but differs by having white (vs. yellow) ray florets, fewer nerves on the leaves (10–14 vs. 18–20), longer bracts of calyculus (6–8 mm vs. 1–3 mm), and larger phyllaries (8–10 mm long, 2–3 mm broad vs. 5–7 mm long, 1– 2 mm broad).

Figure 5. 

The maximum likelihood tree of tribe Senecioneae based on ITS dataset, with Synotis jinpingensis highlighted in red font. Bootstrap values (MLBS) and posterior probabilities (PP) are indicated above the branches. Dashes (-) indicate MLBS < 70% or PP < 0.95.

Description

Perennial herbs, erect, rhizomatous. Rhizome thick, horizontal. Vegetative stems solitary, simple, rarely branched, erect, 50–100 cm tall, median and lower parts subglabrous, upper part often densely yellowish setulose. Flowering stems solitary, erect, scapiform, 15–30 cm tall, few-branched, fulvous tomentose. Leaves always aggregate at base of fertile shoot; petioles 1–1.5 cm long; blades obovate-lanceolate or elliptic, 12–18 cm long, 2.5–4 cm broad, papyraceous, abaxially glabrous or subglabrous, adaxially sparsely pubescent, pinnately veined, lateral veins 10–14, arcuate-ascending, base cuneate, margin shallowly sinuate-apiculate, apex acute-acuminate. Stem leaves on reproductive shoots few, narrowly lanceolate, remote, much smaller. Capitula radiate, numerous, arranged in an attenuate broadly paniculoid corymb; peduncles 3–5 mm long, fulvous tomentose, 1- or 2-bracteate; bracts below capitula linear, 5–20 mm long. Involucres cylindric-campanulate, 8–10 mm long, 2–3 mm broad, with 7–10 subulate bracteoles at base, bracts of calyculus linear, 6–8 mm long, green, apically purple; phyllaries usually 7 or 8, occasionally 5 or 6, oblong, 2–3 mm broad, green, herbaceous, glabrous, apically acute, purple. Ray florets 7 or 8; corolla tube 3.5–4.5 mm long, glabrous; lamina white, oblong-lanceolate, 6–9 mm long, 1.5–2.5 mm broad, 3–4-veined, apically obtuse, 3-denticulate. Disk florets 8–12, white; corolla 4–5 mm long, with ca. 4.5 mm long tube and funnelform limb; lobes ovate-oblong, 3–3.5 mm long, apically acute. Anthers ca. 3 mm, anther tails ca. 1.5 times as long as antheropodia; appendages ovate-oblong; antheropodia slightly dilated at base. Style branches ca. 2 mm long, fringed with long fine papillae, the central tuft prominent, much longer than laterals. Achenes 1.8–2 mm, glabrous. Pappus white, 6–7.5 mm long.

Phenology

Flowering from March to April; fruiting from April to July.

Etymology

The species is named after its type locality, i.e., Jinping county in southeastern Yunnan province, China.

Distribution and habitat

Synotis jinpingensis is currently known from its type locality, i.e., Jinping county in southeastern Yunnan province, China (Fig. 2). It grows in mixed forests at an altitude of ca. 2400 m above sea level.

Conservation status

Synotis jinpingensis seems currently known only from its type locality. Four small populations of this species, each with ca. 100 individuals, have been discovered there. The habitat of S. jinpingensis is now well preserved. The discovery of further populations of this species is to be expected as botanical exploration of southeastern Yunnan proceeds. According to the IUCN Red List Categories and Criteria (IUCN 2022), the new species may better be categorized as Data Deficient (DD).

Acknowledgements

We thank Dr. Patricio Saldivia Pérez and Dr. Rob Smissen for their helpful comments which helped to improve our manuscript. We also thank Mr. Zongli Liang, Mr. Jianhong Li and Mr. Hailong He with the Fenshuiling National Nature Reserve in Jinping county, Yunnan, China, for their help with the field work.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

Ethical statement

No ethical statement was reported.

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 31960043).

Author contributions

Data curation: ZYY. Formal analysis: RC, LCZ. Writing – original draft: MT. Writing – review and editing: QEY.

Author ORCIDs

Liao-Chen Zhao https://orcid.org/0000-0002-6300-7301

Ren Chen https://orcid.org/0000-0002-0910-9737

Zhi-Yong Yu https://orcid.org/0000-0001-8276-5901

Ming Tang https://orcid.org/0000-0001-8419-0996

Qin-Er Yang https://orcid.org/0000-0002-6261-0731

Data availability

All of the data that support the findings of this study are available in the main text.

References

  • Chen YL (1999) Senecioneae Cass. In: Chen YL (Ed.) Flora Reipublicae Popularis Sinicae (Vol. 77). Science Press, Beijing, 326 pp.
  • Chen YL, Nordenstam B, Jeffrey C (2011) Synotis (C.B.Clarke) C.Jeffrey & Y.L.Chen. In: Wu ZY, Raven PH, Hong DY (Eds) Flora of China (Vols 20–21). Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, 489–505.
  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.
  • Fan Y, Wang LY, Zhang R, Tang M (2022a) Notes on the specific identity of Synotis damiaoshanica (Compositae, Senecioneae), with clarification of the confusing identities of S. guizhouensis and S. sinica. Phytotaxa 543(2): 150–160. https://doi.org/10.11646/phytotaxa.543.2.5
  • Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42(2): 182–192. https://doi.org/10.1093/sysbio/42.2.182
  • Jeffrey C, Chen YL (1984) Taxonomic studies on the tribe Senecioneae (Compositae) of Eastern Asia. Kew Bulletin 39(2): 205–446. https://doi.org/10.2307/4110124
  • Kalyaanamoorthy S, Minh B, Wong T, von Haeseler A, Jermiin L (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6): 587–589. https://doi.org/10.1038/nmeth.4285
  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution 30(4): 772–780. https://doi.org/10.1093/molbev/mst010
  • Li HM, Lazkov GA, Illarionova ID, Tong TJ, Shao YY, Ren C (2018) Transfer of Senecio karelinioides (AsteraceaeSenecioneae) to Synotis based on evidence from morphology, karyology and ITS/ETS sequence data. Nordic Journal of Botany 36(7): e01838. https://doi.org/10.1111/njb.01838
  • Li Z, Zheng HL, Tang M (2020) Synotis panzhouensis (Asteraceae, Senecioneae), a distinct new species with red-purple pappus from southwestern Guizhou, China. PhytoKeys 166: 79–86. https://doi.org/10.3897/phytokeys.166.58654
  • Liu YL, Zhang R, Ren C, Liu B, Zhang Y, Tang M (2020) On the specific identity of Chinese endemic species Synotis longipes (Compositae-Senecioneae). Phytotaxa 472(3): 269–276. https://doi.org/10.11646/phytotaxa.472.3.5
  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32(1): 268–274. https://doi.org/10.1093/molbev/msu300
  • Pelser PB, Gravendeel B, van der Meijden R (2002) Tackling speciose genera: Species composition and phylogenetic position of Senecio sect. Jacobaea (Asteraceae) based on plastid and nrDNA sequences. American Journal of Botany 89(6): 929–939. https://doi.org/10.3732/ajb.89.6.929
  • Pelser PB, Gravendeel B, van der Meijden R (2003) Phylogeny reconstruction in the gap between too little and too much divergence: The closest relatives of Senecio jacobaea (Asteraceae) according to DNA sequences and AFLPs. Molecular Phylogenetics and Evolution 29(3): 613–628. https://doi.org/10.1016/S1055-7903(03)00139-8
  • Pelser PB, Nordenstam B, Kadereit J, Watson L (2007) An ITS phylogeny of tribe Senecioneae (Asteraceae) and a new delimitation of Senecio L. Taxon 56(4): 1077–1104. https://doi.org/10.2307/25065905
  • Pelser PB, Kennedy AH, Tepe EJ, Shidler JB, Nordenstam B, Kadereit JW, Watson LE (2010) Patterns and causes of incongruence between plastid and nuclear Senecioneae (Asteraceae) phylogenies. American Journal of Botany 97(5): 856–873. https://doi.org/10.3732/ajb.0900287
  • Ren C, Hong Y, Wang L, Yang QE (2017) Generic recircumscription of Parasenecio (Astera­ceae: Senecioneae) based on nuclear ribosomal and plastid DNA sequences, with descriptions of two new genera. Botanical Journal of the Linnean Society 184(4): 418–443. https://doi.org/10.1093/botlinnean/box034
  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3): 539–542. https://doi.org/10.1093/sysbio/sys029
  • Tang M (2014) A systematic study of the genus Synotis (Compositae-Senecioneae). PhD thesis. University of Chinese Academy of Sciences, Beijing.
  • Tang M, Wang LY, Yang QE (2013c) The identity of Synotis cordifolia (Asteraceae-Senecioneae). Redai Yaredai Zhiwu Xuebao 21(2): 101–108.
  • Tang M, Ren C, Yang QE (2014) Parasenecio chenopodiifolius (Compositae- Senecioneae) is a Synotis and conspecific with S. otophylla based on evidence from morphology, cytology and ITS/ETS sequence data. Nordic Journal of Botany 32(6): 824–835. https://doi.org/10.1111/njb.00574
  • Tang M, Ren C, Chen YS, Yang QE (2022) Synotis nyalamensis (Asteraceae, Senecioneae), a new species from southern Xizang (Tibet), China. Phytotaxa 554(3): 278–284. https://doi.org/10.11646/phytotaxa.554.3.6
  • Tong TJ, Tang M, Ren C, Yang QE (2017) Senecio kumaonensis (Asteraceae, Senecioneae) is a Synotis based on evidence from karyology and nuclear ITS/ETS sequence data. Phytotaxa 292(1): 35–46. https://doi.org/10.11646/phytotaxa.292.1.3
  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR Protocols: a Guide to Methods and Applications. Academic Press, New York, 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Appendix 1

Table A1.

Voucher information and GenBank accession of species used in our study.

GenBank Species Voucher information Herbarium
MH371137 Synotis atractylidifolia (Y. Ling) C. Jeffrey & Y. L. Chen M. Tang & L. Wang 361 IBSC
EF538402 Synotis cappa (Buch.-Ham. ex D. Don) C. Jeffrey & Y. L. Chen Tessier-Yandell 86 IBSC
KJ851593 Synotis chenopodiifolia (DC.) M. Tang et al. M. Tang & C. Ren 532 IBSC
KU696133 Synotis erythropappa (Bureau & Franch.) C. Jeffrey & Y. L. Chen A C. Ren 150 IBSC
MH117782 Synotis erythropappa (Bureau & Franch.) C. Jeffrey & Y. L. Chen B YLDP026D IBSC
MH371138 Synotis karelinioides (C. Winkl.) C. Ren et al. H.M. Li & Q.G. Mao 325 IBSC
AY723255 Synotis lucorum (Franch.) C. Jeffrey & Y. L. Chen A J.Q. Liu 2177 IBSC
KU696134 Synotis lucorum (Franch.) C. Jeffrey & Y. L. Chen B Q.E. Yang et al. 3128 IBSC
KU696135 Synotis muliensis Y. L. Chen C. Ren 148 IBSC
AF459922 Synotis nagensium (C. B. Clarke) C. Jeffrey & Y. L. Chen B. Bartholomew et al. 1991 IBSC
KY347902 Synotis penninervis (H. Koyama) T.J. Tong et al. M. Tang & C. Ren 626 IBSC
KX549951 Synotis solidaginea (Hand.-Mazz.) C. Jeffrey & Y. L. Chen 2015XZ001-B IBSC
Synotis duclouxii (Dunn) C. Jeffrey & Y. L. Chen C. Ren & L.Y. Wang 485 IBSC
Synotis cavaleriei (H. Lév.) C. Jeffrey & Y. L. Chen L.Y. Wang 72 IBSC
Synotis jinpingensis M. Tang et al. Y. Yu et al. JXAU01 JXAU
EF538296 Senecio algens Wedd. S.G. Beck 2879 S
EF538298 Senecio arnicoides Hook. & Arn. O. Zoellner 3474 L
GU818506 Senecio cadiscus B. Nord. & Pelser Rourke 1118 S
KU499905 Senecio changii C. Ren & Q. E. Yang C. Ren et al. WL146 IBSC
EF538313 Senecio chilensis Less. O. Zollner 2958 S
EF538290 Senecio crusoei Pelser T. Stussey 6560 H
EF538322 Senecio ctenophyllus Phil. O. Zoellner 3959 U
EF538312 Senecio culcitioides Wedd. B. Ollgaard & H. Balslev 8822 CHR
AF459946 Senecio doria L. P.B. Pelser cult. 129 WIS
JX895355 Senecio doronicum (L.) L. J. Calvo 4000 WIS
GU818642 Senecio elegans L. Cron & Goodman 687
EF538335 Senecio fistulosus Poepp. ex Less. S.G. Beck & M. Liberman 9672 MJG
EF538336 Senecio flaccidus Less. J. Thuret s.n. MJG
GU818649 Senecio gayanus DC. M. Rosas 2157
GU818650 Senecio gramineus Harv. F.K. Hoener 2104
GU818651 Senecio gregorii F. Muell. D.E. Albrecht 7091
GU818652 Senecio hieracium J. Rémy M. Baeza & L. Finot 3695
EF538348 Senecio hypsobates Wedd B. Ollgaard & H. Balslev 9863 U
GU818662 Senecio ilicifolius L. Cron & Goodman 686
EF538150 Senecio involucratus (Kunth) DC. B. Nordenstam 9438 L
AF459937 Senecio nemorensis L. P.B. Pelser cult.102 L
EF538362 Senecio oerstedianus Benth. B. Nordenstam 9160 S
EF538373 Senecio roseus Sch. Bip. J. Garcia P. 250 U
JX895384 Senecio scopolii Hoppe & Hornsch. ex Bluff & Fingerh. J. Calvo 4715
EF538222 Senecio suaveolens (L.) Elliott D.C. Dister s.n. MJG
GU817570 Senecio tauricolus V. A. Matthews Budak et al. 1735
GU818707 Senecio triodon Phil. F. Luebert & S. Teillier 2266
GU818708 Senecio vestitus P. J. Bergius W. Greuter 21766
AF459925 Senecio viscosus L. P.B. Pelser 300 TEX
AF459924 Senecio vulgaris L. P.B. Pelser cult. 188 CHR
GU818721 Stilpnogyne bellidioides DC. P. Goldblatt & L. Porter 11729
EF538416 Zemisia discolor (Sw.) B. Nord. G.L. Webster et al. 8420 S
EF538143 Abrotanella emarginata (Gaudich.) Cass. R.N.P. Goodall & J. Wood 3352 MU
EF538146 Adenostyles alpina Bluff & Fingerh. C.H. Uhink 98-189a MJG
EF538156 Arrhenechthites mixta (A. Rich.) Belcher M.E. Lawrence 1308 S
GU818508 Capelio caledonica B. Nord. B. Nordenstam 9644
EF538167 Chersodoma jodopappa (Sch. Bip.) Cabrera I. Hensen 2617 S
GU818512 Cineraria abyssinica Sch. Bip. ex A. Rich. P.B. Pelser cult. 208 L
EF538172 Cissampelopsis volubilis (Blume) Miq. Carvalho 3175 US
AF459968 Crassocephalum crepidioides (Benth.) S. Moore P.B. Pelser cult. 354 S
GU818541 Crocidium multicaule Hook. B. Bartholomew 5749
AF457413 Dauresia alliariifolia (O. Hoffm.) B. Nord. & Pelser Mueller & Tilson 907
EF538181 Dendrophorbium bomanii (R. E. Fr.) C. Jeffrey M. Dematteis & G. Seijo 722 MU
GU818546 Dolichoglottis lyallii (Hook. f.) B. Nord. A. Strid 22172
AF459966 Emilia coccinea (Sims) G. Don P.B. Pelser cult. 126 MJG
EF538211 Garcibarrigoa telembina (Cuatrec.) Cuatrec. L. Holm-Nielsen et al. 6211 S
KU570815 Homogyne alpina Cass. Comes 11 MJG
GU818559 Io ambondrombeensis (Humbert) B. Nord. S.T. Malcomber et al. 1380
AF459941 Jacobaea vulgaris Gaertn. P.B. Pelser cult. 6 S
EF538246 Jessea multivenia (Benth.) H. Rob. & Cuatrec. B. Nordenstam 9161 K
GU818568 Kleinia neriifolia Haw. P.B. Pelser cult. 216
GU818574 Lachanodes arborea (Roxb.) B. Nord. R. Cairns-Wicks s.n.
EF538249 Leonis trineura (Griseb.) B. Nord. Smith et al. 3238 L
EF538250 Lepidospartum burgessii B.L. Turner R.D. Worthington 12382 L
AF459961 Ligularia stenocephala (Maxim.) Matsum. & Koidz. R.R. Kowal 3092 WIS
GU818593 Luina hypoleuca Benth. W. Greuter 17706
GU818595 Mikaniopsis clematoides (Sch. Bip. ex A. Rich.) Milne-Redh. A W.J.J.O. de Wilde & B.E.E. de Wilde-Duyfjes 9006
GU817581 Mikaniopsis clematoides (Sch. Bip. ex A. Rich.) Milne-Redh. B I. Friis et al. 499
EF538266 Nesampelos lucens (Poir.) B. Nord. Zanoni 45570 JBSD
EF538267 Nordenstamia kingii (H. Rob. & Cuatrec.) B. Nord. B. Stahl 5572A S
EF538271 Oldfeltia polyphlebia (Griseb.) B. Nord. & Lundin B. Nordenstam & R. Lundin 340 S
AF459960 Othonna capensis L. H. Bailey P.B. Pelser cult. 106 S
GU818608 Packera eurycephala (Torr. & A. Gray) W.A. Weber & Á. Löve M.A. Vincent 8581 MU
EF538283 Pentacalia arborea (Kunth) H. Rob. & Cuatrec. B. Ollgaard & H. Balslev 8298 MU
GU818627 Pippenalia delphiniifolia (Rydb.) McVaugh Spellenberg & Bacon 11048
GU818629 Psacaliopsis purpusii (Greenm. ex Brandegee) H. Rob. & Brettell Panero et al. 2607
GU818631 Roldana suffulta (Greenm.) H. Rob. & Brettell Rzedowski 36569
login to comment