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Abstract
Rumex is one of about 50 genera in the knotweed family, Polygonaceae. The genus comprises about 200 
species with bisexual, or more commonly, unisexual flowers, with the species displaying monoecious, 
dioecious, synoecious (hermaphroditic) or polygamous reproductive systems. Some of the dioecious spe-
cies have heteromorphic sex chromosomes, which is rare amongst angiosperms. We here present a plastid 
phylogeny of 67 species, representing all four subgenera. For this study, we used three chloroplast mark-
ers, rbcL, trnH-psbA, trnL-F and dense taxon sampling to reconstruct the most comprehensive molecular 
phylogeny of Rumex to date. The reconstructed phylogeny for this work resolves six major clades and one 
large grade in Rumex subg. Rumex. In addition, the species with known dioecious reproductive systems are 
resolved within a broader clade we term “the dioecious clade”. These results suggest that the species with 
divergent reproductive systems are more closely related to each other than to other species comprising the 
rest of the Rumex genus.
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Introduction

Commonly known as docks and sorrels, Rumex L. (Polygonaceae) is a relatively large 
genus. Rumex encompasses four circumscribed subgenera, approximately 200 species 
and hundreds of described subspecies or varieties. Many species in Rumex are cosmo-
politan in nature, spanning six continents of the world. However, many individual 
species are either regionally endemic, native or introduced on particular continents 
(Rechinger 1937).

The cosmopolitan distribution of Rumex species is indicative of their ability to 
thrive in a wide variety of environmental conditions. Described species are just as 
recurrent in dry and sandy soils as they are in marshes and cultivated fields, span-
ning the arctic, subarctic, boreal, temperate, tropical and subtropical localities (Löve 
and Kapoor 1967). Although several biological species demonstrate little to no niche 
preference (e.g. Rumex crispus L., Rumex obtusifolius L.), there are others that exhibit 
exceedingly precise ecological requirements (e.g. Rumex bipinnatus L.f., Rumex pictus 
Forrsk.). The large variation in the distribution of Rumex species might also account 
for the large deviation observed in the morphology of these species (Fig. 1), whereby 
some reach almost seven metres in height and others rarely exceed a few centimetres 
(Rechinger 1949; Löve and Kapoor 1967; Rechinger 1990).

In the 20th Century, progress in the taxonomic and cytological study of Rumex 
was largely accomplished by two researchers: Áskell Löve and Karl Heinz Rechinger 
(Rechinger 1937; Rechinger 1954a; Löve and Kapoor 1967). Löve extensively docu-
mented the cytological diversity of Rumex and he proposed a generic status for Acetosa 
and Acetosella (the groups with species bearing heteromorphic sex chromosomes) and 
subgeneric status for Axillares and Platypodium. Löve also considered Rumex to be 
composed of several smaller genera corresponding to a number of cytotypes (Löve 
1957; Löve and Kapoor 1967; Mariotti et al. 2006, 2009).

Over the course of his career, Rechinger effectively monographed Rumex, using 
plant morphology and geographic distribution in his taxonomic treatments (Rechinger 
1933, 1937, 1939, 1949, 1954a, b, 1984, 1990; Brandbyge and Rechinger 1989). By 
the mid-1900s, Rechinger had proposed a subgeneric status for Platypodium and main-
tained Acetosa, Acetosella and Lapathum as comparable subgenera (Rechinger 1954a; 
Table 1). Rechinger chose to retain Rumex as a single genus.

The reproductive systems of Rumex species vary extensively. Species of Rumex 
exhibit synoecious (hermaphroditic), monoecious, dioecious and polygamous 

Table 1. Summary of the recognised subgenera in Rumex, with species diversity and reproductive sys-
tems present.

Subgenus No. of species Sexual system Sex chromosomes
Acetosa 41 Dioecious, Gynodioecious, Polygamous Yes (in part)- XX/XY1Y2

Acetosella 5 Dioecious (rarely polygamous) Yes- XX/XY
Rumex (= Lapathum) 126 Synoecious, Monoecious No
Platypodium  1  Synoecious No
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reproductive systems (Rechinger 1949; Rechinger 1954a; Löve and Kapoor 1967; 
Mosyakin 2005; Navajas-Pérez et al. 2005). Most of the reproductive system diversity 
has been described in subgenera Acetosa or Acetosella. In particular, most species in 
these subgenera are dioecious (Rechinger 1937, 1949, 1954a, 1984). A few species in 
subgenus Rumex have variable systems, especially between synoecy and monoecy (e.g. 
Rumex crispus, J. Burke, pers. obs.). There are also three species of Rumex endemic to 
the Hawaiian Islands (Rumex albescens Hillebr., R. giganteus Aiton and R. skottsbergii 
O. Deg. & I. Deg.), which are all monoecious (Wagner et al. 1999).

Rumex has two different sex chromosome systems exhibited in many of the dioecious 
species, classified in Rumex subg. Acetosa and Rumex subg. Acetosella. In Rumex, the 
documented sex chromosomes are heteromorphic. Two sex-determining chromosomal 
mechanisms are known: XX/XY and XX/XY1Y2 (Löve 1940, 1942,1943, 1944; Löve 
and Löve 1948; Shibata et al. 1999, 2000; Navajas-Pérez et al. 2005; Cunado et al. 
2007; Ming et al. 2011). The XX/XY1Y2 system is dosage-dependent and plant sex is 
based on the autosome to sex-chromosome ratio. In this system, female individuals 
have 14 chromosomes and male individuals have 15 chromosomes (Löve 1940, 1944; 
Löve and Kapoor1967; Navajas-Pérez et al. 2005).

Figure 1. Depiction of morphological variation amongst the different subgenera of Rumex. A Rumex 
acetosella growing in Virginia, USA (subg. Acetosella) B Rumex thyrsoides growing in Morocco (subg. 
Acetosa) C Rumex nervosus growing in Ethiopia (subg. Acetosa) D Rumex obtusifolius growing in New 
York, USA (subg. Rumex) E Rumex bucephalophorus collected on the Moroccan coast (subg. Platypodium) 
F Rumex papilio growing in Morocco (subg. Acetosa). All photo credits J.M. Burke.
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Recent molecular phylogenetic work has sought to resolve the placement of Rumex 
in the Polygonaceae more broadly (Sanchez and Kron 2008; Sanchez et al. 2009; Burke 
et al. 2010; Burke and Sanchez 2011; Sanchez et al. 2011; Schuster et al. 2011, 2013, 
2015). These studies have placed Rumex alongside the other Rumices of Campderá 
(Emex and Oxyria), with the addition of Rheum as either sister to Oxyria (Burke et al. 
2010; Schuster et al. 2011) or to Rumex + Emex (Schuster et al. 2013, 2015). One area 
that lacks clarity has been the placement of Emex, which sometimes appears to be nest-
ed within Rumex (e.g. Sanchez et al. 2011) and is sometimes placed as sister to Rumex 
(e.g. Burke et al. 2010). Moreover, the relationships of species within Rumex, including 
the relationship between Rumex and Emex, continue to be poorly understood due to 
insufficient sampling and paucity of data. To date, the relationships amongst species 
placed within Rechinger’s subgenus Rumex are particularly obscure.

Here we present a new phylogeny of Rumex, constructed using three plastid gene 
regions (trnH-psbA, rbcL and trnL-F) and 67 Rumex species. We have used this phy-
logeny to test the placement and monophyly of its circumscribed subgenera, as well 
as discuss the broad patterns in the evolution of reproductive systems within Rumex.

Materials and methods

Taxon sampling and DNA Isolation

DNA was isolated from 109 accessions, representing 67 Rumex species. Of the 109 in-
cluded accessions, a total of 99 Rumex accessions, six Rheum L. species, three Emex L. 
accessions and one species of Persicaria L. (Mill.) are represented. Persicaria virginiana 
(L.) Gaertn., Rheum alexandrae Batalin, Rheum emodii Wall., Rheum nobile Hook. f. 
& Thomson, Rheum officinale Baill., Rheum palmatum L. and Rheum rhabarbarum L. 
were included as outgroup species. Additional plant samples were obtained through the 
GenBank sequence database (Appendix A1). Samples were taken from a combination of 
herbarium specimens (K, NY, OSC, RAB, US), field collections and cultivated samples 
from collaborators. Herbarium acronyms follow the Index Herbariorum (Thiers 2019).

All fresh leaf samples were dried using silica gel. Plant tissue was homogenised 
using the FastPrep-24 5G Sample Preparation System (M. P. Biomedicals, LLC Santa 
Ana CA, USA). Total genomic DNA was extracted from herbarium specimen-sampled 
and silica-dried leaf tissues using a BIOLINE ISOLATE II Plant DNA Kit (Cat No. 
BIO-52070). Modification for herbarium material proceeded as follows: Cell lysis was 
carried out using 300 µl of buffer (PA1 or PA2) and 30 µl of proteinase K (20 µg/ml) 
and incubated for 18 hours at 65 °C on an orbital shaker.

Marker selection

For this first comprehensive phylogeny of the genus, we focused on plastid marker 
selection. Previous authors utilised nrITS as a nuclear marker (Schuster et al. 2011; 
Schuster et al. 2015). However, we did not utilise nrITS for this phylogeny due to 
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a number of issues that would interfere with accurate reconstruction of evolution-
ary relationships: 1) nrITS is extremely variable and difficult to align (66% of nrITS 
sequence data was excluded in Schuster et al. [2015] publication) and 2) Due to wide-
spread polyploidy documented in multiple Rumex species, sequences of nrITS would 
not necessarily be low copy and there would be substantial issues with paralogy and 
orthology across multiple polyploidy events.

For plastid marker selection, we screened multiple markers that had previously 
been used in Polygonaceae reconstruction (Burke et al. 2010; Burke and Sanchez 
2011; Koenemann and Burke 2020). We selected markers that both showed sufficient 
variation across the genus and were easily amplified for most taxa.

PCR amplification and sequencing

Amplification of DNA markers was completed for three plastid regions: rbcL, trnH-
psbA and trnL-F (Table 2). rbcL was amplified using the following PCR conditions: 
94 °C for 1 min, followed by 34 cycles of 94 °C/15 s, 54 °C/15 s and 72 °C/30 s and a 
final extension period of 5 min at 72 °C. trnH-psbA was amplified using the following 
PCR conditions: 94 °C for 2 min, followed by 34 cycles of 94 °C/30 s, 55 °C/30 s and 
72 °C/30 s and a final extension period of 7 min at 72 °C. trnL-F was amplified using 
the following PCR conditions: 80 °C for 5 min, followed by 34 cycles of 94 °C/1 min, 
55 °C/1 min and 72 °C/2 min and a final extension period of 5 min at 72 °C. PCR and 
gel electrophoresis were performed following standard protocols with no special condi-
tions. PCR experiments were performed separately with only fresh or only herbarium 
material to help prevent cross-contamination.

Table 2. Gene regions used: name of primers, total length of region, % parsimony informative characters.

Gene region Reference Primer names Total aligned length PIC (%)
rbcL Fazekas et al 2008 rbcLF, rbcLR 539 24 (4.5)
trnH-psbA Shaw 2007 psbA, trnH 596 132 (22.1)
3trnL-F Shaw 2005 3’trnLUAAF, trnF GAA 442 65 (14.7)
Combined   1577 221 (14.0)

PCR amplicons were sent to Eurofins Genomics (Louisville, KY) for Sanger se-
quencing. Sequences were edited using Geneious v. 10 (Biomatters Ltd.). Reviewed 
sequences were aligned with MUSCLE (Edgar 2004) and concatenated using MES-
QUITE (Maddison 2005).

Phylogeny reconstruction

All phylogenetic analyses were completed using the CIPRES Science Gateway v. 3.3 (Miller 
et al. 2010). Prior to the phylogenetic reconstructions, we performed ModelTest-NG (Dar-
riba et al. 2020) for the concatenated matrix to determine the suggested model of evolution. 
ModelTest-NG indicated that the best fit was the General Time Reversible (GTR) model.
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We performed Maximum Likelihood (ML) phylogeny reconstruction using 
GARLI v. 2.01.1067 (Zwickl 2006). We used the default GARLI parameters with 
the following exceptions: we performed 1000 search replications (10 iterations of 100 
search replicates). In order to better search tree space, we increased the attachments per 
taxon setting to 150 and extended the generations without improvement parameter 
to 50000. To evaluate support for phylogenetic relationships, statistical bootstrapping 
was performed, specifying only one search replicate per bootstrap iteration for 100 
iterations. All bootstrap trees were downloaded and used to generate a majority rule 
consensus tree in MESQUITE (Maddison 2005). The consensus tree was visualised in 
FigTree version 1.4.3 (Rambaut 2014).

We performed Bayesian Inference phylogeny reconstruction in MrBayes 3.2.7a 
(Ronquist et al. 2012). The priors were set to the defaults (Dirichlet). We set the 
seed number at 123. We conducted two independent Markov Chain Monte Carlo 
(MCMC) runs, each with four chains employing BEAGLE library acceleration (as 
recommended by CIPRES). Each MCMC run was set to complete 5 million genera-
tions, with trees sampled every 1,000 generations. The first 25% of trees in each run 
were discarded as burn-in. MrBayes then synthesised the two independent runs and 
extracted the majority rule consensus tree with posterior probabilities.

Posterior probability and bootstrap values were visualised using FigTree version 
1.4.3 (Rambaut 2014) and MESQUITE (Maddison 2005). Posterior probabilities 
above 90% and bootstrap support values above 70% were considered significant and 
annotated in the final phylogeny.

Results

The most likely tree was generated using 109 specimen accessions. This included seven 
outgroup species, three accessions of Emex and 99 accessions of Rumex. The present 
phylogeny represents 67 Rumex species, more than twice the number of species of 
Rumex sampled in previous phylogenies (31 species in Navajas-Pérez et al. 2005; 13 
species in Schuster et al. 2015). A total of 47 sequences were missing from the final 
matrix, yielding 14.4% missing data in the final analysis (Grant 2022). Table 2 sum-
marises the variability of each of the gene regions. The most variable region was trnH-
psbA, which consisted of 22.1% parsimony informative characters. The least variable 
region was rbcL which consisted of 4.5% parsimony informative characters.

The most likely tree recovered by GARLI received a likelihood score of 
Ln = -5767.548440.

The genus Rumex was recovered as monophyletic with strong support (100 
Bayesian Posterior Probability/98 Maximum Likelihood Bootstrap) (Fig. 2). The 
analysis did not recover Rumex subgenus Rumex, the subgenus with the most species 
diversity, as monophyletic. In our phylogeny, species of subgenus Rumex form a grade 
at the base of the tree (“Basal Grade” – Fig. 2). Emex was recovered as monophyletic, 
just above the Basal Grade and sister to the dioecious clade. While the results indicate 
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strong support for the relationship between the known Emex species, E. australis and 
E. spinosa (100/98), they are conflicting and show poor support for the placement of 
Emex within Rumex. Posterior probability support for the placement of Emex is only 
52% and the most likely GARLI tree placed Emex within the Basal Grade of subgenus 

Figure 2. Bayesian phylogenetic reconstruction for Rumex species using three chloroplast sequences (rbcL, 
trnH-psbA and trnL-F). Thickened branch indicates simultaneous posterior probability above 90% and 
bootstrap support above 70%. Exact support values are indicated at important nodes (Bayesian Posterior 
Probability/Maximum Likelihood Bootstrap). Outgroup species (Rheum and Persicaria) are shown in 
blue. Rumex species, traditionally placed in subgenus Rumex, are shown in red. Species, traditionally 
placed in the sister genus Emex, are shown in black. Rumex species, traditionally placed in subgenus 
Acetosa, are shown in gold. Rumex species, traditionally placed in subgenus Platypodium, are shown in 
purple. Rumex species, traditionally placed in subgenus Acetosella, are shown in green. The asterisk denotes 
the transition to dioecy “Dioecious Clade” referenced in the text.
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Rumex. Furthermore, different gene regions reconstructed conflicting topologies for 
the placement of Emex. The rbcL phlyogeny placed Emex within Rumex subgenus 
Rumex (50% bootstrap support). Both trnh-psbA and trnL-F placed Emex as sister 
to the Rumex genus (trnh-psbA < 50% bootstrap support and trnL-F 91% bootstrap 
support) (results not shown).

The remaining taxa, comprising the subgenera Acetosa, Acetosella and Platypodium 
form a highly supported (99/80) monophyletic group (Fig. 2). This group is denoted 
as “the dioecious clade” because it is here that we see the initial transition to dioecy 
of the known dioecious Rumex species resolved in this group. The relationships of the 
clades within this group are also well-supported. Our recovered phylogenetic tree did 
not recover subgenus Acetosa as monophyletic. Within the dioecious clade, subgenus 
Acetosa is comprised of three well-supported, monophyletic groups, Clade 2 (100/97), 
Clade 3 (100/78) and Clade 4 (100/97) and is nested below a pair of clades, repre-
sented by subgenus Platypodium (Clade 5) and subgenus Acetosella (Clade 6). The pair 
(Platypodium + Acetosella) is also well supported (100/81). Subgenus Platypoidium was 
recovered as monophyletic with strong support (100/100) and consists of four acces-
sions of its only circumscribed species: Rumex bucephalophorus. Species in subgenus 
Acetosella were recovered together with strong support (100/89), but the inclusion of 
Rumex hastatulus means the subgenus was not recovered as monophyletic.

In addition to corresponding largely to the established subgeneric system, the to-
pology also largely corresponds to the diversity of the reproductive and sex chromo-
some systems present in Rumex. Species in subgenus Rumex (Basal Grade) are mostly 
hermaphroditic with no documented heteromorphic sex chromosomes. With no doc-
umented heteromorphic sex chromosomes, Emex is also represented as a clade and 
consists of purely monoecious species. Subgenus Acetosa consists entirely of dioecious 
species, with some members exhibiting the sex chromosome system XX/XY1Y2. Subge-
nus Platypodium, another hermaphroditic group with no reported sex chromosomes, is 
nested between subgenera Acetosa and Acetosella. Subgenus Acetosella consists of species 
that are both dioecious and have the sex chromosome system XX/XY.

Discussion

Our results produced a phylogeny of Rumex, with six major clades and one grade, 
largely congruent with Rechinger’s subgeneric classification. The placement of Emex 
conflicted, based on the molecular markers used. In our phylogeny, it is sister to the 
dioecious clade, but without strong support.

Within the phylogeny, the basal grade is mostly made up of species from Rumex 
subgenus Rumex. That subgenus Rumex was recovered as a grade rather than a clade 
is not surprising given the known extensive hybridisation amongst species of this 
subgenus. This phenomenon most certainly contributed to the lack of resolution in 
species-level relationships within subgenus Rumex. Additionally, although hybridisa-
tion between species in subgenus Rumex and species in the other subgenera are not 
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well documented, it is possible that such hybrids exist and serve to hinder our ability 
to distinguish subgenus Rumex as a clade. We suspect that increased taxon sampling 
and genetic data, especially from the nuclear genome, will help to resolve relationships 
amongst species in subgenus Rumex.

Although dioecious, the species included in Clade 2 and Clade 3 have no reported 
heteromorphic sex chromosome systems. The species included in Clade 4 exhibit a 
complex sex chromosome system (XX/XY1Y2). This placement suggests that this het-
eromorphic sex chromosome system was derived from dioecious ancestors. The genetic 
origin of heteromorphic sex chromosomes in Rumex is beyond the scope of this manu-
script, but this result provides a framework to investigate potentially intermediary taxa 
that may contain homomorphic or transitionary sex chromosome systems.

Subgenus Platypodium (Clade 5) was resolved as monophyletic and nested within 
“the dioecious clade”. Based on its plant and chromosome morphology, earlier studies 
concerning Rumex bucephalophorus have referred to it as the link between subgenus 
Rumex, which is predominantly synoecious and subgenus Acetosella, which is predomi-
nantly dioecious (Löve 1944). Although morphologically variable, R. bucephalophorus 
consistently exhibits a synoecious reproductive system. Its derivation from amongst 
the dioecious species in this phylogeny suggests a reversal from a dioecious condition.

Subgenus Acetosella (Clade 6) was not recovered as monophyletic. Known dioecious 
species, R. hastatulus, of subgenus Acetosa is nested within subgenus Acetosella. Rumex 
hastatulus is documented to exhibit two distinct karyotypes: a complex sex chromosome 
system (XX/XY1Y2, North Carolina karyotype) which is characteristic of subgenus 
Acetosa and the simple sex chromosome system (XX/XY, Texas karyotype) which is 
characteristic of subgenus Acetosella (Navajas-Pérez et al. 2005; Mariotti et al. 2009; 
Hough et al. 2014). In addition, Rechinger’s 1937 treatment indicates a polygamous 
reproductive system for R. hastatulus (Rechinger 1937). Given the variability found 
within this species, R. hastatulus could have been placed in either subgenus (Acetosa 
or Acetosella), where species appear to have diversified according to the type of sex 
chromosome system they exhibit. This finding suggests the plasticity of reproductive 
and sex chromosome systems within Rumex, as a single species can exhibit two 
different karyotypes.

One of the striking features of the phylogeny recovered in this study is its 
congruence with the taxonomic system established by Rechinger (Rechinger 1933, 
1937, 1939, 1949, 1954a, 1954b, 1984, 1990). Rechinger retained the diversity of 
species as a single genus, but divided them into four subgenera: Rumex (Lapathum), 
Platypodium, Acetosa and Acetosella. Each subgenus is prominently present in the 
topology. Subgenus Platypodium is monophyletic. Subgenus Acetosella is monophyletic 
even with the inclusion of Rumex hastatulus, whose placement has been ambiguous. 
The two largest subgenera, Acetosa and Rumex, were recovered as grades. The grade of 
subgenus Acetosa is well-resolved and well-supported. The grade of subgenus Rumex is 
both less well-resolved and less well-supported. The recovered topology, nevertheless, 
serves to confirm the major relationships amongst species in the genus, relationships 
for which Rechinger had proposed using only morphology.
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In all, this work has provided a reconstructed phylogeny that differs from those 
currently published (Navajas-Pérez et al. 2005; Schuster et al. 2015) and has tested 
the placement and monophyly of its circumscribed subgenera. This work builds on 
those previous studies by providing an increased taxon sampling density, which has 
resulted in a more comprehensive reconstruction of the evolutionary history of Rumex 
and a more thorough examination of the stability of the subgeneric system. This work 
has provided an early outline of the evolution of reproductive systems in Rumex, 
suggesting an ordered plasticity and transitions from synoecy to dioecy to dioecy 
with heteromorphic sex chromosomes. Additionally, this work suggests a possible 
reversal from a dioecious condition. Future directions in Rumex research include the 
identification and application of nuclear markers that will allow for a more robust 
phylogeny, particularly with respect to the placement of Emex. Additionally, future 
genomic studies will serve to elucidate the evolution of the sex chromosomes and sex 
determining regions in Rumex.
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GenBank sequences used for this study:

rbcL:	 Rumex pamiricus Rech. f. – JF944139.1, Rumex sibiricus Hulten- 
KC483892.1

trnH-psbA:	 Rumex pamiricus- JN047053.1

Table A1. DNA Sequences Generated for this Study.

Scientific name Voucher
Emex australis Steinh. P.C. Zietsma 4053, NY
Emex spinosa (L.) Campd. Schuhwerk 90/328, NY
Emex spinosa (L.) Campd. J.M. Burke 302, HUDC
Persicaria virginiana (L.) Gaertn. J.M. Burke s.n., BH
Rheum alexandrae Batalin Cultivated Material, HUDC
Rheum emodii Wall. Cultivated Material, HUDC
Rheum officinale Baill. Cultivated Material, HUDC
Rheum palmatum var. taguticaum L. Cultivated Material, HUDC
Rheum rhabarbarum L. Cultivated Material, HUDC
Rheum nobile Hook. f. & Thomson Pradham 820581, BH
Rumex abyssinicus Jacq. J.M. Burke 251, HUDC
Rumex acetosa L. K.D. Grant s.n., HUDC
Rumex acetosella L. R. Brand 1336, NY
Rumex acetosella L. D.E. Atha 10521, NY
Rumex acetosella L. K.D. Grant s.n., HUDC
Rumex acetosella L. J.M. Burke 309, HUDC
Rumex albescens Hillebr. Lorence 5224, K
Rumex albescens Hillebr. Wood 14959, US
Rumex alpinus L. Larsen 20708, US
Rumex alpinus L. D.E. Atha 5114, NY
Rumex altissimus Alph, Wood Shultz 8717, US
Rumex altissimus Alph. Wood D.E. Atha 10857, NY
Rumex alveolatus Los.-Losinsk. Rechinger 48318, US
Rumex amurensis F. Schmidt ex Maxim. Barrett Lilan22p
Rumex aquaticus L. Elias 7251, US
Rumex arcticus Trautv. Shetler 4560, US
Rumex arifolius All. K. Deguchi 4023, NY
Rumex bequaertii De Wild. Germishuizen 3447, US
Rumex berlandieri Meisn. Thieret 17178, US
Rumex brachypodus Rech. f. J.M. Burke 312, HUDC
Rumex brasiliensis Link R. Wasum 1655, NY
Rumex brownii Campd. Wilson 10250, NY
Rumex brownii Campd. Wilson 10250, US
Rumex bucephalophorus L. Barrett 17RBTA5
Rumex bucephalophorus L. J.M. Burke 293, HUDC
Rumex bucephalophorus L. J.M. Burke 301, HUDC
Rumex bucephalophorus L. J.M. Burke 304, HUDC
Rumex chrysocarpus Moris D.E. Atha 13012, NY
Rumex conglomeratus Murray D.E. Atha 10045, NY
Rumex conglomeratus Murray J.M. Burke 271, HUDC
Rumex conglomeratus Murray J.M. Burke 298, HUDC

http://www.ncbi.nlm.nih.gov/nuccore/JF944139.1
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Scientific name Voucher
Rumex conglomeratus Murray J.M. Burke 299, HUDC
Rumex crispus L. J.M. Burke 268, HUDC
Rumex cuneifolius Campd. J.C. Solomon 13044, US
Rumex cyprius Murb. Kocher B-273, US
Rumex densiflorus Osterh. Pinkava P12626, US
Rumex dentatus L. D.G. Kelch 07.328, OSC
Rumex giganteus Aiton K. Thorne 6736, NY
Rumex giganteus Aiton Canfield 1304, US
Rumex graminifolius Gerogi ex Lamb. Petrosky 1811, US
Rumex hastatulus Baldwin D.E. Atha 10503, NY
Rumex hastatus D. Don MacArthur 1291, US
Rumex hastatus D. Don Barrett s.n.
Rumex hymenosepalus Torr. Cultivated material, HUDC
Rumex hymenosepalus Torr. A. Tiehm 15727, OSC
Rumex induratus Bioss. et Reut. M.W. Chase 925, K
Rumex induratus Bioss. et Reut. Barrett s.n.
Rumex induratus Bioss. et Reut. J.M. Burke 310, HUDC
Rumex intermedius DC. Rainha 5270, US
Rumex japonicus Houtt. Bai-Zhang 4049, US
Rumex kerneri Borbás Barta 2004-390, US
Rumex lanceolatus Thunb. H.J. Venter 10295, NY
Rumex longifolius DC. D. E. Atha 8858, NY
Rumex lunaria L. NR. 8879, NY
Rumex lunaria L. Barrett 17RLLM1
Rumex lunaria L. Barrett 17RLTF1
Rumex maritimus L. Shiu Ying Hu 13127, US
Rumex mexicanus Meisn. D.E. Breedlove 13305, US
Rumex microcarpus Campd. Barrett MJ-P40 (Seed)
Rumex nepalensis Spreng. J.M. Burke 248, HUDC
Rumex nervosus Vahl J.M. Burke 252, HUDC
Rumex obtusifolius L. J.M. Burke s.n., BH
Rumex obtusifolius L. J.M. Burke 270, HUDC
Rumex orbiculatus A. Gray Ruee 43716, US
Rumex orbiculatus A. Gray D.E. Atha et al. 8883/2010, NY
Rumex pallidus Bigelow D.E. Atha 13922, NY
Rumex palustris Sm. J.M. Burke 306, HUDC
Rumex papilio Coss. & Balansa, S.L. Jury 13659, K
Rumex papilio Coss. & Balansa J.M. Burke 303, HUDC
Rumex patientia L. D.E. Atha 10674, NY
Rumex paucifolius Nutt. Barrett 17RpCOT3.2
Rumex paucifolius Nutt. Barrett 17RpCMC15.2
Rumex peruanus Rech. f. V. Quipuscoa 1349, NY
Rumex pictus Forssk. Barrett 17Rp.AR1
Rumex pulcher L. J.M. Burke 294, HUDC
Rumex pulcher L. J.M. Burke 295, HUDC
Rumex pulcher L. J.M. Burke 296, HUDC
Rumex rothschildianus Aarons. ex Evenari Barrett 17Rrs3.2
Rumex sagittatus Thunb. Strobach B55575, US
Rumex sagittatus Thunb. H.J. Venter 9995, NY
Rumex salicifolius Weinm. W. Wood s.n., OSC
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Scientific name Voucher
Rumex sanguineus L. J.M. Burke 316., HUDC
Rumex scutatus L. Barrett s.n.
Rumex skottsbergii O.Deg. & I.Deg. Degener 35050, US
Rumex spiralis Small. D.E. Atha 9727, NY
Rumex stenophyllus Ledeb. D.E. Atha 11389, NY
Rumex stenophyllus Ledeb. R.L. McGregor 40643, OSC
Rumex tianschanicus Losinsk. Barrett SH1-A-2007454
Rumex thyrsiflorus Fingerh. Ollegard 261, US
Rumex thyrsiflorus Fingerh. Elias 7282, US
Rumex thyrsoides Desf. J.M. Burke 305, HUDC
Rumex thyrsoides Desf. J.M. Burke 313, HUDC
Rumex thyrsoides Desf. J.M. Burke 307, HUDC
Rumex tuberosus L. S. Omar et al. 52591, K
Rumex tuberosus subsp. nov J.M. Burke 308, HUDC
Rumex usambarensis (Dammer) Dammer Ellemann 889, NY
Rumex venosus Pursh. R.E. Brainerd 428, OSC
Rumex vesicarius L. Brummit 15271, US
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(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
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